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Abstract

Autonomous Underwater Vehicles (AUVs) are presenting an ever expanding

range of applications that enhance human capabilities and mitigate human

risk. Development of a successful subsurface autonomous launch and recovery

system would expand the functional use of AUVs in many �elds.

Defence Research and Development Canada (DRDC) is leading a col-

laborative project with the University of New Brunswick (UNB) to develop

such a system that would recover AUVs to a slowly moving submerged sub-

marine. This thesis provides an overview of the design, dynamic modelling,

and preliminary control in simulation of an electro-mechanically actuated

AUV dock concept, which operates without using hydrodynamic �uid power

to provide motive force. The device is partially faired and has a R⊥R⊥P

serial manipulator architecture. In short, the device is referred to as the

mechanically actuated RRP serial manipulator.

High speed actuation of the device is required to compensate for rela-

tive trajectory errors between the submarine and AUV during signi�cant sea

states in littoral waters. Hydrodynamic forces present in water cannot be
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ignored and will be modelled using the Morison Equation. Unimodal Linear

Wave Theory is used to simulate AUV kinematics, establishing end e�ector

design trajectories, as well as providing wave kinematics for hydrodynamic

modelling. Alterations to the recursive Newton-Euler derivation of manipu-

lator dynamics are explained, and results of simulations are presented. Model

Predictive Control (MPC) of the mechanically actuated RRP serial manipu-

lator is simulated using a Dynamic Matrix Control (DMC) architecture.

The dynamic models are veri�ed analytically and provide accurate

evaluation without lose of generality. Dynamic modelling shows the actuator

loads for the proposed device are signi�cant. Drag is the largest contributer

and indicates the device must be streamlined. The link diameter used for

simulation is overly conservative and should be optimized to reduce its size,

this will decrease the required actuator loads. The control simulation shows

the DMC controller is a robust design for tracking, however it needs to be

combined in a cascading architecture to control both position and velocity

for precise control.

Overall, the mechanically actuated RRP serial manipulator is a viable

design but requires further modelling and development. The device becomes

more promising as it is streamlined and reduced in overall length.
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ifi Force vector experienced by joint i

ω̇ Angular velocity vector of link

ω̇ Angular acceleration vector of link

v̇ Acceleration vector of link

F Inertial force of link

N Inertial moment of link

v̇c Velocity vector at center of mass of link

pc Position vector of center of mass of link

τi Actuator torque or force sustained by joint i

xxv



Chapter 1

Introduction

Autonomous Underwater Vehicles (AUVs) are presenting an ever expanding

range of applications that enhance human capabilities and mitigate human

risk. The main limitation of these vehicles is endurance. Oceanographers

and scientists envision continuous automated surveying of geology and ma-

rine life. Navies and governments desire continual surveillance of territory,

and autonomous front line capabilities delivered covertly by submarines [19].

The bottleneck in the adoption of these capabilities is a viable autonomous

Launch and Recovery (L&R) system [21].

Watt et al. [33] discuss three kinds of AUV L&R systems: passive

subsurface stationary docks, surface ships, and torpedo tube L&R for mil-

itary submarines. The majority of existing AUV docking devices use some

form of man-in-the-loop control with the exception of autonomous subsur-

face stationary docks. Present autonomous AUV docking experiments have
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yielded marginal success rates, primarily due to limited lateral dexterity of

streamlined AUVs. Active control of the dock appears to be necessary for

higher success rates.

Defence Research and Development Canada (DRDC) has proposed

an innovative project to develop an active automated docking device to be

used on slowly moving submarines while maintaining level �ight with various

AUV designs. The University of New Brunswick (UNB) is collaborating on

this multi-year project with the development of a prototype design along with

its dynamic model and motion controller for multi-body simulations. This

thesis discusses the formulation of a dynamic model and control simulations

of a mechanically actuated docking device for which physical prototypes are

to be built in the near future.

Related Research

The development of AUVs and AUV supporting systems have been gaining

signi�cance for over a decade. The United States of America's Department

of the Navy has compiled an AUV master plan [19], outlining the strategic

advantage of using, and the primary goals of implementing, an AUV program.

The plan depicts the use of AUV �eets with a centralized mission control

ship, discussing the importance of AUV support systems and infrastructure.

The development of an active autonomous L&R docking device is required

to progress the functionality of using AUVs.

2



The current autonomous docking devices have had marginal success

rates, too low to merit the risk of using the AUVs in service. Stokey et al. [26]

achieved a 62% docking rate using a REMUS 100 AUV and a 1 m diame-

ter stationary funnel dock with acoustic homing. Allen et al. [5] obtained a

similar docking rate of 60% using an updated version of a similar setup with

a rectangular funnel dock. Both trials used varying locations and environ-

mental conditions, and were conducted in conjunction with the Woods Hole

Oceanographic Institution. Using electromagnetic homing, Feezor et al. [13]

achieved successful docking �ve out of eight attempts. They used a Sea-

Grant Odyssey IIB AUV, with a 1 m diameter stationary funnel dock. The

trials were preformed over a two week period in environmental conditions

with cross currents upwards of 0.3 m/s. They noted that docking typically

failed when the AUV initially was misaligned with the dock by more than

30 degrees. Additional similar stationary docking trials have been preformed

with various homing and sensing schemes [10, 20, 15] but without presenting

docking success rates.

Surface ships typically use human-controlled L&R systems involving

cranes or ramp systems [2]. There are surface L&R systems under devel-

opment using towed bodies [22], and unmanned recovery ribs [1]. These

systems' success depends on the sea state [33].

Many countries are interested in an AUV L&R capability for sub-

marines [12, 24, 21, 7]. Fedor [12] discusses optimal AUV docking locations

along a submarine. To maximize docking feasibility, Fedor suggests docking
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occur in areas with minimal disturbances, e.g., avoiding local turbulence and

wakes from obstructions such as the submarine sail. The current submarine

docking system under development utilize either tethered remotely operated

vehicles (ROVs) [24, 21, 7] or a deployed stationary dock [25] for AUV recov-

ery. The current methods also recover to the submarine's torpedo or missile

tubes, disabling their functional use for the submarine.

The majority of these docking devices rely on either the AUV for cor-

rectly aligning itself with the dock or man-in-the-loop remote control. As

described by the Director of Innovation, of the US O�ce of Naval Research,

AUV recovery must account for the: sea state, operational tempo, auton-

omy, motion prediction, and AUV maneuvering and control authority to be

successful and robust [21]. Seizer [22] notes the absence of ship-board au-

tonomous AUV L&R devices. DRDC suggests that the de�ciencies apparent

with stationary autonomous docking systems might be corrected using active

autonomous docking.

A successful active, autonomous AUV docking device will require a

mechanism with the control and dexterity to achieve contact with the AUV in

the presence of environmental disturbances. Mechanically actuated manip-

ulators are currently in use with submerged remotely operated devices [3].

These are typically used for precision tasks but on a relatively small size

scale. Control of ship board robotic manipulators has been explored by

From et al. [14]. They augment a PD controller with a real-time wave pre-

diction model to overcome the non-inertial e�ects of the manipulator base
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and optimize joint torques for prescribed trajectories.

There has been signi�cant e�ort to develop AUV docking systems, all

with marginal success rates. The functional use of AUVs is limited by the

absence of a robust AUV docking device. An active, autonomous, reliable

AUV docking device would allow AUVs to be recovered to naval platforms

quickly and accurately. The successful implementation of such a device will

require the synthesis of sensing information, robust autonomous control, and

an actuated mechanism with su�cient dexterity to overcome relative motion

between the AUV and dock imposed by environmental disturbances. This

project will contribute to the development of AUV docking by proposing an

active autonomous AUV docking solution for submarines.
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Chapter 2

Project Overview

2.1 Project Scope

The AUV underwater docking problem is complex. Defence Research and

Development Canada (DRDC) states the docking solution should provide

for [33]:

� deep water operations,

� littoral operations with minimal sea state limitations,

� automation for reliability and temporal e�ciency,

� low risk to the submarine propeller or appendages should something

break or let go during docking,

� low risk of AUV/submarine collision in the presence of environmental

disturbance,
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� a �exible choice of AUV size and shape to maximize endurance and

functionality,

� minimal docking infrastructure on the AUV to simplify use of commercial-

o�-the-shelf vehicles,

� and a fail safe design for emergency maneuvers.

More speci�cally, it is convenient to consider docking in three primary stages:

making physical contact between the AUV and dock, capture, and park-

ing [33]. Achieving precise contact with the AUV has been identi�ed as the

most challenging task of this project, largely because the system has com-

plex nonlinear dynamics and if unsuccessful, capture will become infeasible.

As a consequence, designing a dock prototype which is capable of achiev-

ing precise contact with the AUV has been established as the �rst stage of

the overall project. UNB will provide a proof-of-concept design, including

a dynamic model of the prototype and its controller for initial multi-body

simulations. DRDC and other collaborators will provide sensing systems,

AUV homing trajectories, and expertise to assist in the development of the

initial prototype design for dynamic simulation.

2.2 Design Criteria

AUV capture will occur alongside the submarine, heading into the waves,

while the submarine is at depth maintaining level �ight in littoral waters.
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Figure 2.1: Proposed AUV docking envelope, de�ning the minimum required
workspace for the device [32].

All designs must be made fail safe in operation to mitigate the risk to sub-

mariners. The most important of the UNB design objectives are:

� The primary objective of the mechanism is to provide transverse tra-

jectory corrections for the AUV during the �nal stages of achieving

contact,

� The submarine will maintain straight and level �ight at 2 to 3 knots

(≈ 1 to 1.5 m/s),

� Docking will occur from 4 to 8 m o� the side of the submarine's hull,

at the midpoint of the submarine where the �ow is most uniform, as

shown in Figure 2.1,

� The dock must achieve precise contact with a point on the AUV; given

a tolerance of ±0.005 m,
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� Initially, the orientation of the AUV will be neglected, reducing the

task to three degrees of freedom and focusing on accurately contacting

a point on the AUV,

� The worst case scenario is de�ned as docking at 15 m depth in littoral

waters in sea state 6 (4 to 6 m high waves),

� The worst case AUV motion is assumed to be the �uid particle motion

given by unimodal linear wave theory predictions of sea state 6 waves,

� and the dock design must be fail-safe minimizing risk to submariners.

2.3 Primary Concept Variants

A large number of actuation concepts have been analysed for the docking

mechanism. They can be classi�ed as either mechanically actuated or hydro-

dynamically actuated. Mechanically actuated designs contained more tradi-

tional power transformers such as scissor arm linkages, and motor actuated

links, as shown in Figure 2.2a. Less conventional concepts such as tensioned

spring and cable articulated bodies, and adjustable arrestor cables were also

investigated [6, 9]. While, hydrodynamically actuated designs included di-

rected water-jets, actively controlled hydrofoils, as shown in Figure 2.2b, or

towed bodies.

Qualitative concept evaluation has been a large task, accounting for

input from a wide variety of sources. Fail-safe design considerations, consul-
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(a) (b)

Figure 2.2: Examples of the two primary autonomous dock concept variants,
shown with their faired base. (a) Mechanically actuated 3-DOF arm , and
(b) Hydrodynamically actuated wing.

tations with submariners, and proof-of-concept analysis have been the main

drivers of the process. These inputs have lead to the avoidance of mecha-

nisms using cables or towed bodies due to the increased risk of fouling the

propeller. Eventually the two most promising concept variations have been

agreed to be rigidly connected manipulators, which are either mechanically

actuated or hydrodynamically actuated mechanisms, as shown in Figure 2.2.

A mechanically actuated mechanism will be able to move in the longitudi-

nal plane in addition to the transverse plane. Having each joint actively

driven with a motor leads to the potential bene�ts of having rapid closed-

loop response times, relatively simple and robust control algorithm, good

disturbance rejection characteristics, and the fact that actuation does not

require �uid �ow.

Hydrodynamically actuated concepts use the forward motion imparted

by the submarine and an actively pitched wing to indirectly provide motive

force. This allows the device to move in the transverse plane, relying on

the forward motion of the AUV to correct for relative error, in the longitu-
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dinal plane, between itself and the submarine. Hydrodynamically actuated

devices will derive potential bene�ts of: low actuation power and noise, in-

herent streamlining for reduced drag, and passive compliance to compensate

for submarine roll.

2.4 Research Objective

The main objective of this research is to contribute to the overall docking

project by proposing a mechanically actuated, active, autonomous dock de-

sign capable of achieving precise contact with an AUV subject to the given

design parameters. The proposed mechanical device will be simulated with

a preliminary controller to evaluate the potential performance of the device

quantitatively.

The intent of this thesis is to provide DRDC with a thorough under-

standing of a possible mechanically actuated docking device, identifying any

critical issues. The selection of the proposed device over alternate mechani-

cally actuated docking devices will be discussed and justi�ed. This will assist

DRDC in their selection of a �nal docking solution.
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2.5 Proposed Mechanically Actuated Mecha-

nism Sub-Variations

The preliminary mechanically actuated sub-variants consist of Cartesian 3DOF

serial or parallel mechanisms. Serial mechanisms consist of links and joints

connected in a single series from base to end e�ector. Parallel mechanisms

are closed loop structures consisting of multiple series of links and joints

sharing one common end e�ector.

Both serial and parallel mechanisms consist of varying joint types (JT)

and joint con�gurations (JC). Their architecture is commonly described in

series of joint pairs, per series of links, with the general form of, JTJCJT. A

joint type de�nes the joint's degrees of freedom and its local motion. While,

a joint con�guration describes the geometrical relationship between the posi-

tion of one joint to another adjoining joint, i.e., perpendicular (⊥) or parallel

(‖). There are 4 primary joint types, revolute (R), prismatic (P), universal

(U), and spherical (S). Revolute joints have 1DOF and rotate about a �xed

axis. Prismatic joints have 1DOF and translate linearly along a �xed axis.

Universal joints have 2DOF and consist of two revolute joints connected in

a perpendicular joint con�guration with an intersecting axis of rotation, i.e.

U≡R⊥R. Spherical joints have 3DOF and consist of three revolute joints

with an intersecting axis of rotation and are arranged perpendicularly to one

another, i.e., S≡R⊥R⊥R.

Initially, a R⊥R‖R robotic serial manipulator, as shown in Figure 2.3,
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(a) (b)

Figure 2.3: R⊥R‖R mechanically actuated concept under consideration.

was proposed [9]. The device has a 2DOF shoulder at its base and a 1DOF

elbow along its mid-length.This mechanism is a deck-mounted device and

along with its architecture provides a large workspace. The hypothesized

bene�ts of this device include, its ability to dampen the e�ects of submarine

roll on the end e�ector via its elbow, the ability to be serviced at sea (because

it is accessible from the deck), and its potential to complete tasks beyond

just AUV contact, such as AUV stowage. This potential design presents

some challenges, primarily hydrodynamic drag and vibration from vortex

shedding. Thus, actuator torque and power requirements are hypothesized

to be unreasonably large and its �exibility may render precise control of the

end e�ector impossible.

A parallel robotic manipulator, as shown in Figure 2.4, was proposed

by MacKenzie [33]. The original mechanism was de�ned as a tripod dock

with two drive legs, actuated with lead screws, and constrained with a pas-
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(a) (b)

Figure 2.4: 2PUU-SS parallel manipulator concept under consideration.

sive support leg. The original design is expanded to include hypothesized

joint architecture. The revised architecture is a 2PUU-SS parallel manipu-

lator. Similarly, there are two actuated legs consisting each of an actuated

prismatic joint, denoted by P, with a link between the P actuator and end

e�ector, connected by two universal joints (U). The mechanism also contains

a link connected by two spherical joints (S), between the base and the end

e�ector. This architecture constrains the mechanism to 3DOF, although it

is di�cult to determine whether the device will produce the required end

e�ector trajectory without further kinematic analysis. Parallel manipulators

can maneuver large payloads quickly and accurately. Their closed-loop link

architecture often increases the overall rigidity of the mechanism. As a conse-

quence of their multiple links, their footprint and infrastructure are typically

large in comparison to their workspace which may increase the e�ects of

hydrodynamic forces.
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(a) (b)

Figure 2.5: R⊥R⊥P mechanically actuated concept under consideration.

An R⊥R⊥P robotic serial manipulator, as shown in Figure 2.5, is also

proposed. This device consists of a 2DOF shoulder at its base, similar to the

R⊥R‖R device, and a prismatic translating arm allowing the device to move

in the longitudinal plane in addition to the transverse plane. This device

is hypothesized to be the optimal mechanically actuated architecture as it

contacts the AUV with the minimum required distance from the submarine.

This in turn minimizes the device's exposed infrastructure in the onset �ow,

reducing hydrodynamic e�ects.
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Chapter 3

Establishing a Design Trajectory

A benchmark end e�ector trajectory is �rst established based on the docking

parameters. The worst case AUV kinematics, relative to the submarine, are

assumed to be conservatively represented by those of a �uid particle disturbed

by sea state 6 waves at a depth of 15 m in water 30 m deep. Unimodal linear

wave theory is used to estimate the kinematics of a �uid particle as an ocean

surface wave moves past that particle.

3.1 Linear Wave Theory

The fundamental governing equations describing �uid motion are derived by

investigating conservation laws applied to a �uid passing through a �xed

�uid element bounded by a control surface. These laws state that mass (m),

momentum, and energy must be conserved. To develop the potential �ow
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problem the laws of conservation of mass and momentum are employed [35].

The conservation of mass states that the net rate of �ow of mass into the

�uid element equals the rate of increase of mass in the �uid element. The

conservation of mass can be reduced to the continuity equation,

∂ρ

∂t
+∇ · ρq = 0 (3.1)

where ρ is the �uid density, ∇ is the Cartesian gradient operator, q is a

Cartesian velocity vector of the �uid q = [u v w]T . The conservation of

momentum states that the rate of increase of momentum of a �uid particle

equals the sum of forces on the �uid particle. For a �xed �uid element the

conservation of momentum can be reduced to,

ρ
Dq

Dt
= ρg −∇P +∇ · τij (3.2)

where Dq
Dt

is the total acceleration of a particle that instantaneously occupies

the �uid element, g is gravity, P is pressure, and τij is the viscous stress

tensor acting on the element.

Hydrodynamics studies of �uid �ows with high Reynolds numbers

typically �nd viscous e�ects are limited to thin boundary layers and thin

wake regions near the surface of a submerged body [16]. This allows the

majority of analysis to assume the �uid �ow is inviscid and incompressible.

Inviscid �ow neglects viscous e�ects, i.e., viscosity = 0, while incompressible

�ows state that �uid density is constant and does not vary with time. Katz
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and Plotkin [16] show that, the vorticity in the high Reynolds number �ow

�elds being studied is con�ned to the boundary layer and wake regions where

the in�uence of viscosity is not negligible and so it is appropriate to assume an

irrotational as well as inviscid �ow outside these con�ned regions. Therefore,

White [35] shows the continuity equation for �uid �ows which are inviscid,

incompressible, and irrotational becomes,

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0 (3.3)

where Φ is the velocity potential and is de�ned such that,

q = ∇Φ (3.4)

Laplace's equation, Eq. (3.3), is a linear di�erential equation and provides

the basis for potential �ow problems. The momentum equation, Eq. (3.2),

can be reduced to the unsteady Bernoulli equation,

∂Φ

∂t
+
P

ρ
+
‖∇Φ‖2

2
+ gz = Constant (3.5)

To derive the particle kinematic equations for a Unimodal Linear

Wave, the velocity potential pertaining to the �uid region, as described in

Figure 3.1, must be determined. The velocity potential must satisfy Eq. (3.3),

that is,

∂2Φ

∂x2
+
∂2Φ

∂z2
= 0 (3.6)
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Figure 3.1: De�nition sketch of a progressive wave train [23, 34].

The velocity potential will be bounded by the following conditions,

∂Φ

∂z
= 0 at z = −h (3.7)

where h is the overall sea depth. This means the vertical particle velocity ż

at the sea bed is equal to zero as the sea �oor is �xed. Secondly, the vertical

�uid motion has to be equal to the vertical velocity of the free surface.

∂η

∂t
=
∂Φ

∂z
at z = η(x, t) (3.8)

where η is the free surface elevation from the mean surface level z = 0 at

position x and time t as the wave train moves past.

The dynamic free surface boundary condition is derived from the un-

steady Bernoulli equation assuming the pressure at the free surface is con-

stant and neglecting the second order quantity ‖∇Φ‖2
2

η =
−1

g

∂Φ

∂t
(3.9)
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where g is the acceleration of gravity. The velocity potential can then be

solved, and is described by,

Φ =
πH

kT

cosh(k(h+ z))

sinh(kh)
sin

(
kx− 2πt

T

)
(3.10)

where H is the wave height, k is the wave number, T is the wave period,

and z is the mean depth of the wave particle. For a wave of a given period,

propagating in an ocean of constant depth, k is determined using the linear

dispersion relation,

kg tanh (kh) =

(
2π

T

)2

(3.11)

which relates k and T due to the free surface boundary condition. The

corresponding horizontal particle velocity ẋ can be derived as,

ẋ =
∂Φ

∂x
=
πH

T

cosh(k(h+ z))

sinh(kh)
cos

(
kx− 2πt

T

)
(3.12)

Likewise, the vertical particle velocity is de�ned as,

ż =
−∂Φ

∂z
=
πH

T

sinh(k(h+ z))

sinh(kh)
sin

(
kx− 2πt

T

)
(3.13)

The particle displacement and local acceleration can then be integrated and

derived respectively.

It should be noted that although linear wave theory has its assump-

tions, the results provide a foundation for de�ning an AUV's trajectory. The
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Table 3.1: Parameters for linear wave theory model.

NATO Sea State 6
Maximum Wave Height H (m) 6

Tmin(sec) 10.5
Tavg(sec) 13.8
Tmax(sec) 17.5

Sea depth h (m) 30
Particle depth z (m) -15

behaviour is assumed to be unimodal, having a single frequency wave system.

Observations show true wave behaviour is more complex where 59% of seas

are multi-modal and nearly 45% of all observed wave are multi-directional [8].

Multi-modal waves have at least two distinct frequencies, potentially more,

and can be unidirectional or multi-directional. These real e�ects must be

considered in the overall docking process but this research will assume linear

wave theory is su�cient to de�ne the workspace and kinematic extremities

the active dock may have to track without lose of generality.

3.2 AUV Motion Bounds

The speci�c variables used to de�ne the particle trajectory are summarized in

Table 3.1. The wave height and wave periods are determined from statistical

data for operation in sea state 6 [8, 18]. While the operating conditions are

de�ned in the design criteria. The AUV's kinematics can be evaluated

during one phase of the passing of the wave train. The particle is assumed
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Figure 3.2: Fluid particle horizontal and vertical displacement, velocity, and
acceleration amplitudes given a minimum wave period of Tmin = 10.5 sec-
onds.
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Figure 3.3: Fluid particle horizontal and vertical displacement, velocity, and
acceleration amplitudes given an average wave period of Tavg = 13.8 seconds.

to be at position x = 0 relative to the wave train and its kinematics are

described as a function of time. The results are described in an inertial

frame and plotted in Figures 3.2-3.4, respectively.

3.3 Summary of AUV Design Trajectory

Conservatively assuming the submarine to be una�ected by the waves and

the AUV motion is de�ned by the moition of a �uid particles induced by a

passing wave, Unimodal Linear Wave Theory provides a benchmark end ef-
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Figure 3.4: Fluid particle horizontal and vertical displacement, velocity, and
acceleration amplitudes given a maximum wave period Tmax = 17.5 seconds.
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fector trajectory for the relative kinematics between the AUV and submarine.

The results show that the relative motion between the submarine and the

AUV can be signi�cant. Maximum displacements can exceed ± 4 m within

a 17 s wave period, while both the velocity and acceleration also have large

amplitudes. It should be clari�ed that the docking device must be capable

of achieving these trajectories, the device will not necessarily track this tra-

jectory completely under real operation but must be capable of responding

to these bounds.
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Chapter 4

Dynamic Model Development

The dynamic equations of a manipulator allow the joint torques or joint

forces (τi) to be calculated depending on joint type. Two common approaches

are used when solving serial manipulator dynamics: Lagrangian, which is an

energy based method, and Newton-Euler, which is a closed form method.

The Newton-Euler method will be used.

The recursive Newton-Euler formulation analyzes a link uniquely and

propagates the e�ects acting on each link to the others to develop a dynamic

model for the overall mechanism. This di�ers from analyzing the mechanism

as one whole body, which is the more common method used in hydrodynamic

analysis. The advantage being, the recursive technique maintains constant

moment of inertia tensors for each link. The method also allows direct ob-

servation of multiple dynamic variables of the mechanism.
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4.1 General Derivation of Distributed Hydro-

dynamic Forces

The primary hydrodynamic forces to consider in a blu�ed submerged mechan-

ically actuated mechanism are drag (fd), the force due to added mass (fam),

and the Froude-Krylov force (fFK) [27]. In general, bodies which are sym-

metric about local onset velocity q, can only produce lift under special cir-

cumstances not considered here. This means that under expected operating

conditions the cylindrical links in Figure 2.5 will produce drag, but not lift.

These forces are evaluated using the Morison equation and applying strip

theory by assuming the links are slender. That is, if a member is signi�-

cantly longer than its own cross section; localized 2D section forces can be

integrated over the length (L) of the member to obtain the net force.

4.1.1 Morison Equation for Slender Bodies

The Morison Equation, originally presented by Morison, O'Brien, Johnson,

and Schaaf in 1950, is a semi-empirical equation which approximates the nor-

mal force per unit length acting on a body in oscillatory �ow [23, 27, 29]. The

Morison equation accounts for both the e�ects of the body moving through

quiescent water as well as the e�ects of waves if present. To develop the

equation we must �rst derive its components. It is convenient to develop the

Morison equation in scalar form, which is equivalent to determining the total

in-line normal force acting collinear to the onset �ow vector. The application
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of the Morison equation in three-dimensional vector form is discussed in the

preceding section.

Drag is the force component parallel to the relative velocity of the

moving �uid and it is proportional to the body's projected area in the �ow.

Drag consist of the force due to pressure on the cylinder as the �ow passes

around it and the force due to friction between the �uid and the cylinder.

The magnitude of drag due to pressure (fdP ) per unit length of the cylinder

can be described as,

fdP =

∫ 2π

0

1

2
P cosφdo dφ (4.1)

where P is pressure, φ is the angular position, and do is outer diameter of

the cylinder. The magnitude of drag due friction (fdF ) per unit length of the

cylinder can be described as,

fdF =

∫ 2π

0

1

2
τo sinφdo dφ (4.2)

where τo is the wall shear stress on the cylinder surface. The total drag

magnitude can be obtained by summing Eq. (4.1) and Eq. (4.2),

fd =

∫ 2π

0

1

2
do (P cosφ+ τo sinφ) dφ (4.3)

Eq. (4.3) can be rewritten in non-dimensional form, as described by Sumer [27],

28



and is given by,

fd
1
2
ρdo‖q‖2

=

∫ 2π

0

(
P − Po
ρ ‖q‖2

cosφ+
τo

ρ ‖q‖2
sinφ

)
dφ (4.4)

where Po is the hydrostatic pressure. The right-hand-side of Eq. (4.4) is more

commonly denoted as CD the 2D dimensionless drag coe�cient. In general,

CD is a function of the Reynolds number de�ned as,

Re =
‖q‖do
υ

(4.5)

where υ is the kinematic viscosity. Typically CD is determined from accepted

experimental data. This allows the drag component of the Morison equation

to be de�ned as,

fd =
1

2
CDρdo q‖q ‖ (4.6)

Note the ‖q‖2 term is rewritten as q‖q‖ to maintain the sign of the velocity

ensuring the force is in the direction of the onset velocity.

Added mass is the added inertia the link must overcome when accel-

erating; it represents the inertia of �uid being accelerated as the link accel-

erates. That is, as mass is the proportionality constant between the kinetic

energy of a link and the square of its velocity, added mass is the proportion-

ality constant between the kinetic energy of the �uid surrounding a link and

the square of that link's velocity [30].

To calculate the force due to added mass the pressure on the surface
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of the cylinder is integrated. The pressure is determined from the �ow �eld

around the body due to the pressure gradient created when accelerating the

body in still water. The disturbance velocity potential of the �uid in the

immediate region of the cylinder with forward velocity q is determined in

polar coordinates and is given by Milne-Thomson via Sumer [27],

Φ = ‖q‖
(
do

2

4r

)
cosφ (4.7)

The speed of the �uid on the surface of the cylinder (v) at r = do
2
can be

calculated by deriving both the radial and angular velocity components,

vθ = −1

r

∂Φ

∂φ
= ‖q‖ sinφ (4.8)

vr = −∂Φ

∂r
= ‖q‖ cosφ (4.9)

v2 = vθ
2 + vθ

2 = ‖q‖2
(
cos2 φ+ sin2 φ

)
(4.10)

The pressure around the cylinder can be calculated using the unsteady Bernoulli

equation as follows,

P

ρ
+
v2

2
− ∂Φ

∂t
= constant (4.11)

where as shown in Eq. (4.10), v
2

2
is constant. Eq. (4.11) can be rearranged

to give the pressure on the cylinder surface as,

P = ρ
∂

∂t

(
1

2
do cosφ ‖q‖

)
+ constant (4.12)
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where the constant includes v
2

2
and will not contribute to the resulting force.

Therefore the force due to added mass for a cylinder per unit length can be

described as,

fam =

∫ 2π

0

1

4
ρdo

2q̇ cos2 φ dφ (4.13)

=
π

4
ρdo

2q̇ (4.14)

The Froude-Krylov force occurs only when the �uid in which the body

is submerged is in motion, i.e. waves. This force is due to the pressure

gradient generated by the accelerating �uid in the outer-�ow region, and can

be shown by,

∂P

∂x
= −ρd‖U‖

dt
(4.15)

where U is the �uid velocity far from the cylinder. As shown in Sumer [27],

the Froude-Krylov force can be calculated from integrating the pressure on

the surface of the cylinder using the surface integral,

fFK = −
∫
S

P · n̂ dS (4.16)

where S is the cylinder surface, and n̂ is the unit vector normal to the surface

S. Applying the Gauss theorem the Froude-Krylov force for a cylinder can

be written as,

fFK = ρV
dU

dt
(4.17)
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where V is the volume of the body. Eq. (4.17) can be rewritten as the

Froude-Krylov force per unit length given by,

fFK =
π

4
ρdo

2U̇ (4.18)

Combining Eq. (4.6), Eq. (4.14), and Eq. (4.18) the Morison equation

can be de�ned as,

fh =
1

2
CDρdo q ‖q ‖+

π

4
ρdo

2q̇+
π

4
ρdo

2U̇ (4.19)

which in this form can be applied using strip theory to evaluate the total

hydrodynamic force fh acting on the cylinder. Note that in Eq. 4.19, q is

relative velocity of the �uid to the cylinder, while U is the velocity of solely

the �uid induced by the waves.

4.1.2 Application of Morison Equation to Manipulator

Dynamics

Joint frames {i} and {i+ 1} are assigned to the link, as shown in Figure 4.1.

A local frame {j} is located at point j and oriented identical to frame {i}.

The local velocity jv is described by,

jv = ωi×ipj + vi + j
kR

kU (4.20)
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Figure 4.1: General free body diagram depicting pertinent variables for
derivation of distributed Hydrodynamic forces.

where ωi is the angular velocity of link i, ipj is the local position vector of

point j as seen from frame i, vi is the Cartesian velocity of the link as seen

from joint i, here the 3× 3 rotation matrix j
kR gives the orientation of frame

j as seen from joint k, and kU is the velocity of the �uid as seen in the frame

k. The local acceleration jv̇ is de�ned as,

jv̇ = ω̇i×ipj + iωi ×
(
iωi × ipj

)
+ v̇i + j

kR
kU̇ (4.21)

where ω̇i is the angular acceleration of link i, v̇i is the Cartesian acceleration

of the link as seen from joint i, and kU̇ is the acceleration of the �uid as seen

in the frame k.
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Two dimensional strip theory is used to model the hydrodynamic

forces on each link. For this analysis, it is assumed the hydrodynamic forces

on the link can be determined by analyzing the �ow at each cross-section in

2D planes normal to the longitudinal axis and summed over the entire link

to estimate the total hydrodynamic force. When applying this method the

axial component of the onset �ow is ignored and the local onset velocity in

the 2D cross-section plane is de�ned as,

jq = −
(
jv−

( jv · ipj
‖ipj‖2

)
ipj

)
(4.22)

and local onset acceleration q̇ in the 2D cross-sectional plane can be expressed

as,

jq̇ = −
(
jv̇−

( jv̇ · ipj
‖ipj‖2

)
ipj

)
(4.23)

where jq is only the component perpendicular to the link member of the local

velocity at point j in coordinates of frame {j}, and jq̇ is the component

perpendicular to the link member of the local acceleration at point j in

coordinates of frame {j}.

Using this approach the local drag force in each cross-sectional plane

jfd is de�ned as,

jfd =

(
1

2
CDdoρ‖jq‖

2
dL

)
jq̂ (4.24)

where do is outer diameter of the link corresponding to the reference length

for this speci�c body, dL is the elemental length of the discretized section
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at point j, and jq̂ is the unit vector of the normal onset velocity. The local

moment due to drag (indj) is simply evaluated using the cross product,

indj = ipj × jfd (4.25)

Similarly, the force due to added mass (jfam) in each cross-sectional

plane is quanti�ed as,

jfam =
(
ρ
π

4
do

2‖jq̇‖ dL
)
jq̂ (4.26)

The moment due to the local force due to added mass (inamj) can be de-

scribed as,

inamj = ipj × jfam (4.27)

Finally, the Froude-Krylov force in each cross-sectional plane is deter-

mined using Eq. (4.18) and the �uid particle acceleration which is obtained

using linear wave theory presented in Chapter 3. The local Froude-Krylov

force in each cross-sectional plane (jfFK) is de�ned as,

jfFK =
(π

4
ρdo

2‖U̇‖
)

ˆ̇
U (4.28)

where the moment due to the local Froude-Krylov force (inFKj) is given by,

inFKj = ipj × jfFK (4.29)
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Since all of the hydrodynamic e�ects of interest are superposable vec-

tor quantities, they can be represented as single equivalent force-moment

couples,

ifh =
L∑
j=0

jfd +
L∑
j=0

jfam +
L∑
j=0

jfFK (4.30a)

inh =
L∑
j=0

indj +
L∑
j=0

inamj +
L∑
j=0

jnFK (4.30b)

where ifh is the net hydrodynamic force as seen from the joint frame {i}

acting on link i, and inh is the net hydrodynamic moment acting on the

entire link as seen from the joint frame {i} acting on link i.

4.2 2D Planar Dynamic Model Development

of a Submerged Rigid Cylinder in General

Plane Motion in Quiescent Water

A Planar 2DOF dynamic model of a submerged rigid cylindrical link oper-

ating in still sea water is investigated. Therefore, drag and the force due

to added mass will be present but not the Froude-Krylov force. The link's

motion is constrained to planar translation and rotation about a �xed axis,

de�ning general plane motion. The free body diagram of the submerged link

is depicted in Figure 4.2, de�ning the 2D problem.

The link is assumed to be neutrally buoyant, having uniform geometry
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Figure 4.2: De�nition of generic link i translating and rotating in general
plane motion.

and density. The hypothesized geometry of the device was determined quali-

tatively from the design criteria in Section 2.2. The link length is de�ned by

the maximum distance to the outer bound of the proposed workspace result-

ing in an overall length of L=8 m. To determine the link diameter the e�ect

of link diameter on the 2D dimensionless drag coe�cient was investigated.

Using the Reynolds number, Eq. (4.5), and experimental data relating the

2D dimensionless drag coe�cient and Reynolds number for cylinders in cross

�ow, shown in Figure 4.3, a range of potential diameters where the drag coef-

�cient remained constant could be determined. Outer link diameters ranging

between do=0.15 m to do=0.50 m resulted in a constant 2D dimensionless

drag coe�cient of CD=1.2. Knowing the hydrodynamic forces increase with

larger diameters the smaller diameter of do=0.15 m is preferred. As the

selection of the hypothesized link diameter is somewhat arbitrarily chosen

the preferred minimum link diameter is doubled to provide a more conser-
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Figure 4.3: Experimental data relating the 2D dimensionless drag coe�cient
and Reynolds number for cylinders in cross �ow [27].

vative evaluation of the dynamic model. Therefore, for simulation purposes

a link diameter of do=0.30 m is selected. Qualitatively, the outer link di-

ameter must be large enough to accommodate internal components (such as

cabling) which may run through the device as well as allowing for su�cient

wall thickness to sustain bending moments during operation. It is possi-

ble the diameter could be reduced to improve streamlining, however, further

modelling of the �exibility of the joints and links is required. It should be

noted that these geometric parameters solely provide a basis to evaluate the

design concept. Due to neutral buoyancy, the gravitational e�ects can be

neglected and an ideal mass of the link is determined as the equivalent mass

of water which the link displaces. The real device will need to be balanced to

produce near neutral buoyancy. Regardless whether the device will be neu-

trally buoyant, a controller and su�ciently sized actuators will be required

to drive the system.
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The Planar 2DOF dynamic model can be simpli�ed to a system of

equations representing the summation of forces,

fi − ifh = mv̇c = fi − (fd + fam) (4.31)

where fd and fam are derived from Eq. 4.30a respectively, v̇c is the velocity

of the body, and the summation of moments,

τi − (nd + nam) = Iθ̈ (4.32)

where τi is the joint torque acting at frame i, nd and nam are derived from

Eq. 4.30b, and I is the mass moment of inertia of the cylinder. The model

can now be developed using the concepts presented in Section 4.1. Not the

inertial force is identical to the force due to added mass in this case because

the links are neturally bouyant cylinders.

4.2.1 Analytical Veri�cation of Planar 2DOF Dynamic

Model in Quiescent Water

The model can be decoupled into its components and veri�ed analytically

using 2D strip theory. Three veri�cation tests are presented:

� the link moves in pure translation, extended perpendicular to the onset

�ow, with a forward velocity u = [1, 0]T m/s,

� the link rotates about a �xed position, with a constant angular velocity
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θ̇ = 0.1 rad/s,

� and the manipulator rotates about a �xed position, with a constant

angular acceleration θ̈ = 0.001 rad/s2.

Veri�cation tests one and two verify the linear and rotational portions of

Eq. (4.22) respectively as well as verifying both Eq. (4.24) and Eq. (4.25).

While the third case veri�es the rotational portion of Eq. (4.23) respectively

as well as verifying both Eq. (4.26) and Eq. (4.27).

To validate the �rst test case, a speci�c equation for drag is derived

using 2D strip theory,

fd =
1

2
CDdoρ

∫ L

0

(u)2dy (4.33)

where Cd = 1.2 for cylindrical cross section. Because the member is not

accelerating the force due to added mass is zero as shown by Eq. 4.26. The

inertial e�ects due to the mass of the link are not present as the link is in

pure translation having no rotation. The joint torque τi simply becomes,

τi =
1

2
CDdoρ

∫ L

0

y(u)2dy (4.34)

The analytical results for test case one are shown in Table 4.1. The 2D

dynamic model results, as shown in Figure 4.4, are veri�ed by the analytical

results. The simulation shows added mass and inertial e�ects do not con-

tribute to the required joint torque in constant translation. This veri�es the
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Figure 4.4: Resultant (a) force and (b) torque from 2D General Plane
Motion dynamic model, for submerged cylindrical link in pure transla-
tion (Test Case 1 ).

nd [kNm] nam [kNm] Iθ̈ [kNm] τi [kNm] fd [N] fam [N]

5.90 0 0 5.90 1477 0

Table 4.1: Analytical results for Test Case 1, where linear velocity
u=[1, 0, 0]T m/s, angular velocity θ̇=0 rad/s, and angular acceleration
θ̈=0 rad/s2.

translational component of the 2D general plane motion dynamic model.

The analytical equations for the second test case is similar to those of

the �rst where u is replaced by,

u = θ̇y (4.35)
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Figure 4.5: Resultant (a) force and (b) torque from 2D General Plane Motion
dynamic model, for submerged cylindrical link in �xed rotation with constant
angular velocity (Test Case 2 ).

Again, added mass and inertia e�ects are not present as the link is rotating

at a constant angular velocity. Therefore, drag can be expressed as

fd =
1

2
CDdoρ

∫ L

0

(θ̇y)2dy (4.36)

and torque can be expressed as,

τi =
1

2
CDdoρ

∫ L

0

y(θ̇y)2dy (4.37)

It is important to note that the length of the overall device should be mini-

mized to reduce hydrodynamic loads on the structure. The analytical results

for test case two are shown in Table 4.2. The 2D dynamic model results, as

shown in Figure 4.5, are veri�ed by the analytical results. Like test case one,
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nd [kNm] nam [kNm] Iθ̈ [kNm] τi [kNm] fd [N] fam [N]

1.89 0 0 1.89 315.18 0

Table 4.2: Analytical results for Test Case 2, where linear velocity
u=[0, 0, 0]T m/s, angular velocity θ̇=0.1 rad/s, and angular acceleration
θ̈=0 rad/s2.

the simulation shows added mass and inertial e�ects do not contribute to the

required joint torque when rotating at a constant angular velocity about a

�xed axis. This veri�es the drag component of the 2D general plane motion

dynamic model due to rotation.

The analytical equations for the third case are derived similarly to test

case two. The analytical drag equation and torque due to drag are identical

to those of test case two, Eq. 4.36. and Eq. 4.37 respectively. The analytical

equation for the force due to added mass can be de�ned as,

fam = ρ
π

4
do

2

∫ L

0

(θ̈y)dy (4.38)

The torque due to added mass and the inertia of the link are present with

angular acceleration. Therefore, the torque required at the joint can be

de�ned as,

τi = Iθ̈ +

(
1

2
CDdoρ

∫ L

0

y(θ̇y)2dy + ρ
π

4
do

2

∫ L

0

y(θ̈y)dy

)
(4.39)
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nd [Nm] nam [Nm] Iθ̈ [Nm] τi [kNm] fd [N] fam [N]

varies 12.37 12.37 varies varies 2.32

Table 4.3: Analytical results for Test Case 3, where linear velocity
u=[0, 0, 0]T m/s, angular velocity θ̇ is numerically integrated, and angular
acceleration θ̈=0.001 rad/s2.

Similar to drag, the torque required to overcome added mass increases with

length, supporting the suggestion overall length of the device should be min-

imized. The analytical results for test case three are shown in Table 4.3.

The 2D dynamic model results, as shown in Figure 4.6, correlate to the ex-

pected values. The simulation shows added mass and inertial e�ects remain

constant with θ̈. While drag increases with the square of θ̇. This veri�es

the acceleration based components of the 2D general plane motion dynamic

model.

4.2.2 Planar 2DOF Dynamic Model Evaluation for Hor-

izontal and Vertical Kinematics of the Design Tra-

jectory in Quiescent Water

The design trajectories established in Chapter 3, shown in Figures 3.2 to 3.4,

are resolved into angular coordinates in terms of θx , for its horizontal x-

axis particle kinematics, and θz, for its vertical z-axis particle kinematics,

corresponding to the AUV motion in each perspective plane. A forward

velocity of u=[1, 0, 0]T m/s is added to the horizontal model evaluation which
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Figure 4.6: Resultant (a) force and (b) torque from 2D General Plane Motion
dynamic model, for submerged cylindrical link in �xed rotation with constant
angular acceleration (Test Case 3 ).

is equivalent to the forward motion of the submarine. The estimated required

torque for each planar motion is plotted in Figures 4.7 through 4.9.

4.2.3 Summary of 2D Planar Dynamic Model Evalua-

tions of the Design Trajectory

The torque requirements of the mechanically actuated dock device are signi�-

cant. The primary contributor to the large torque requirements for the device

is due to the drag which the blu� submerged body must overcome. The esti-

mated loads of the device suggests the mechanism must be well streamlined

in order to be a feasible design.

A well streamlined body can potentially reduce the drag experienced

by a blu� body with same frontal area by up to 10 times its original mag-
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Figure 4.7: Resultant torque from 2D General Plane Motion dynamic model,
for submerged cylindrical link in (a) horizontal and (b) vertical planes due
to drag, added mass, and mass e�ects as well as net resultant torque; given
a minimum wave period (Tmin) of 10.5 s.
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Figure 4.8: Resultant torque from 2D General Plane Motion dynamic model,
for submerged cylindrical link in (a) horizontal and (b) vertica l planes due
to drag, added mass, and mass e�ects as well as net resultant torque; given
a average wave period (Tavg) of 13.8 s.

46



0 5 10 15 20
−5

0

5

10

15

20

25

R
oo

t T
or

qu
e 

(τ)
 [k

N
m

]

Time [sec]

Total Torque
due to Added Mass
due to Mass
due to Drag

(a)

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

R
oo

t T
or

qu
e 

(τ)
 [k

N
m

]

Time [sec]

Total Torque
due to Added Mass
due to Mass
due to Drag

(b)

Figure 4.9: Resultant torque from 2D General Plane Motion dynamic model,
for submerged cylindrical link in (a) horizontal and (b) vertical planes due
to drag, added mass, and mass e�ects as well as net resultant torque; given
a maximum wave period (Tmax) of 17.5 s.

nitude [23]. The device could possibly operate in a swept-back position to

improve streamlining, but the improvements are marginal. Alternatively,self-

aligning fairings (i.e., unactuated fairings which align freely with the �ow)

could be incorporated into the mechanically actuated dock design to improve

streamlining.

Sweeping back a device of �xed overall length will reduce drag and

possibly vibration. However, designing a swept-back device which must ex-

tend to an adjacent position (i.e., the proposed workspace reach of 8 m)

requires an increased overall length in comparison to a device which reaches

the adjacent point with the minimum length. The later pertains to the RRP

mechanically actuated docking concept. In pure translation a swept-back de-
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sign will reduce the drag by a factor of cos θ in comparison to the un-swept

design in the identical �ow. In rotation, preliminary results show that, due

to the increased length the swept-back design will actually experience larger

drag and force due to added mass than the direct design. Again, it is noted

that, the torque required to overcome drag, increases quartically with length,

while the torque required to overcome added mass, increases cubically with

length, due to the links rotation. This increase due to length is greater than

the reduction of cos θ in drag in a swept-back device. This suggests fairing an

unswept device would be a more appropriate solution for the mechanically

actuated mechanism.

The 2D simulation shows the overall length and size of the device

contributes signi�cantly to the required actuation torques. This suggests the

R⊥R‖R concept, shown in Figure 2.3, and the 2PUU-SS concept, shown in

Figure 2.4, are less feasible in comparison to the R⊥R⊥P concept, shown

in Figure 2.5. Although the 2PUU-SS concept may be able to have thinner

links and therefore be streamlined, it requires longer overall link lengths

which will increase drag cubically with length. The 2PUU-SS link dimensions

and interaction with one another requires further investigation, based on the

preliminary Planar 2DOF model the 2PUU-SS concept appears less feasible

then the R⊥R⊥P (RRP) concept. Therefore, the R⊥R⊥P (RRP) concept

is the most feasible device and will be further evaluated for simulation.
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4.3 Dynamic Model Development of a Spatial

3DOF Submerged R⊥R⊥P Serial Manipu-

lator

4.3.1 Kinematics

Conventional joint frames are assigned to each link, as shown in Fig. 4.10,

using the Denavit-Hartenberg (DH) notation described in Craig [11]. The

forward displacement problem, which describes a Cartesian end e�ector po-

sition given corresponding joint positions, is solved using the propagation

of homogeneous transformation matrices. While, the inverse displacement

solution, which describes joint positions corresponding to a given Cartesian

end e�ector position, uses a geometric solution. The Jacobian is then derived

and used to solve the velocity and acceleration vectors in both Cartesian and

joint spaces respectively. The forward displacement solution is derived by

propagating homogeneous transformation matrices from the base frame of

the manipulator (0) outward towards the end e�ector (ee) . A homogeneous

transformation matrix (ii−1T) describes a point in space relative to another,

i
i−1T =


i
i−1R

i
i−1p

0 0 0 1


(4.40)
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Figure 4.10: Denavit-Hartenberg frame assignment for RRP serial manipu-
lator.

where the 3× 3 rotation matrix i
i−1R gives the orientation of joint i as seen

from joint i − 1 while the 3 × 1 position vector (ii−1p) gives the position of

joint i from joint i−1 as seen from the base frame 0 of the manipulator. The

position and orientation of link i is relative to link i−1 using the homogeneous

transformation matrix i
i−1T.

The homogeneous transformation matrices are developed using the

DH parameters, as described in Table 4.4, which de�ne the relative link

twist (αi−1), link length (ai−1), joint o�set (di), and joint angle (θi) of each

pair of joints in the mechanism. Link twist is the angle from zi−1 to zi

measured around xi−1. Link length is the distance from zi−1 to zi measured

along xi−1. The joint o�set is the distance from xi−1 to xi measured around

zi. The joint angle is the angle of xi−1 to xi measured around zi.
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Joint i αi−1 ai−1 di θi
1 0 0 0 θ1

2 π
2

0 0 θ2

3 π
2

0 d3 0
ee 0 0 0 0

Table 4.4: Denavit-Hartenberg parameters for RRP serial manipulator.

A homogeneous transformation matrix can now be obtained for each

link of the manipulator, where,

i
i−1T =



cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) − sin(αi−1)di

sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi) cos(αi−1)di

0 0 0 1


(4.41)

The transformation matrices are then pre-multiplied in a kinematic chain to

obtain a speci�c joint's position and orientation relative to a de�ned frame,

as described by the transformation equation,

0
eeT = 0

1T
1
2T

2
3T

3
eeT (4.42)

The forward displacement solution, x, can then be expressed as 0
eep extracted
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from the product of the homogeneous transformation matrix 0
eeT,

0
eep = x =


cos(θ1) sin(θ2)d3

sin(θ1) sin(θ2)d3

− cos(θ2)d3

 (4.43)

where θ1 is the joint position of joint 1, θ2 is the joint position of joint 2, and

d3 is the joint position of joint 3. 0
eep describes the end e�ector position in

Cartesian space relative to the base frame {0}.

The inverse displacement, Θ, solution is solved geometrically. Θ de-

scribes the manipulator's position in joint space. That is, given a Cartesian

end e�ector position, the inverse displacement problem will give the required

joint positions to obtain the given Cartesian end e�ector position. The quad-

rant corrected arctangent function is applied to solve a speci�c joint angle θi,

given the vector components of link i as seen from the base frame of the

manipulator.

Θ =


atan2(y, x)

atan2(z,
√
y2 + x2) + π

2√
x2 + y2 + z2

 (4.44)

where Θ is a vector of joint positions.

The forward velocity solution is obtained through solving the time

derivative of the forward displacement problem; it is convenient to write the
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forward velocity solution in the form of a matrix equation,

ẋ = J(Θ)Θ̇ (4.45)

where ẋ is a vector of Cartesian velocities of the end e�ector, Θ̇ is a vector

of joint velocities, and J is the Jacobian matrix of the manipulator. The

Jacobian matrix is de�ned as the matrix that transforms the joint rates in

actuator space to the velocity state in the end e�ector space [28], and can be

described as,

J(Θ) =


− sin(θ1) sin(θ2)d3 cos(θ1) cos(θ2)d3 cos(θ1) sin(θ2)

cos(θ1) sin(θ2)d3 sin(θ1) cos(θ2)d3 sin(θ1) sin(θ2)

0 sin(θ2)d3 − cos(θ2)

 (4.46)

The forward velocity vector equation (4.45) is manipulated using basic matrix

operations, the inverse velocity solution can be solved,

Θ̇ = J−1(Θ)ẋ (4.47)

Similarly, the forward and inverse acceleration solutions are derived

by taking the time derivative of the forward and inverse velocity solution
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Figure 4.11: Resultant joint kinematics from Spatial 3DOF Inverse kinematic
model, given an average wave period (Tavg) of 13.8 s.

matrix equation respectively,

ẍ = J̇(Θ)Θ̇ + J(Θ)Θ̈ (4.48)

Θ̈ = J̇−1(Θ)ẋ + J−1(Θ)ẍ (4.49)

where ẍ is a vector of Cartesian accelerations, Θ̈ is a vector of joint accelera-

tions, and J̇ is the time derivative of the Jacobian matrix of the manipulator.

The serial manipulator kinematics can now be fully de�ned; allowing the mo-

tion of mechanism to be described in both Cartesian space and joint space.

To verify both the forward and inverse kinematic models a simple test

is presented. First set point trajectories are de�ned for the Cartesian kine-

54



0 2 4 6 8 10 12 14
−10

−5

0

5

P
os

iti
on

x [m]
y [m]
z [m]

0 2 4 6 8 10 12 14
−2

0

2

V
el

oc
ity

dx/dt [m/s]
dy/dt [m/s]
dz/dt [m/s]

0 5 10 15
−1

0

1

Time [sec]

A
cc

el
er

at
io

n d2x/dt2 [m/s2]

d2y/dt2 [m/s2]

d2z/dt2 [m/s2]

Figure 4.12: Resultant end e�ector kinematics from Spatial 3DOF forward
kinematic model, given a average wave period (Tavg) of 13.8 s.

matics of the end e�ector using the AUV trajectory de�ned in Figure 3.3

with a nominal o�set from the submarine of y = -8 m. The set points are

evaluated using the inverse kinematic model, Eq. (4.44) for joint displace-

ment, Eq. (4.47) for joint velocities, and Eq. (4.49) for joint accelerations

with the results shown in Figure 4.11. These results are then used as inputs

to the forward kinematic model, where Eq. (4.43) de�nes the end e�ector po-

sition, Eq. (4.45) de�nes the end e�ector velocity, and Eq. (4.48) de�nes the

end e�ector acceleration. The forward kinematic model results are shown in

Figure 4.12. The forward model results are then compared with the original

setpoint pro�les used as inputs to the inverse kinematic model. The resulting

error is plotted in Figure 4.13. The minimal error shows both the inverse
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Figure 4.13: Resultant error between Spatial 3DOF forward kinematic model
and inverse kinematic model, given a average wave period (Tavg) of 13.8 s.

and kinematic models behave as expected. The kinematic model can now be

used to de�ne trajectories for the Spatial 3DOF simulation.

4.3.2 Dynamics

The links of the RRP are assumed to be rigid bodies. The dynamic equa-

tions are propagated outward from the base to the end e�ector; using the

propagated forward solution an inverse solution is solved. Knowing the kine-

matics of the end e�ector and the acting external forces on the mechanism

the speci�c joint torques can be calculated.

The general form of the angular velocity of joint i+ 1 can be derived
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as,

i+1ωi+1 = i+1
i Riωi + θ̇i+1

i+1ẑi+1 (4.50)

and is a function of the angular velocity of the previous joint iωi and the

current joint's joint velocity θ̇i. Applying Eq. (4.50) to the speci�c joint

variables, the angular velocity of each link is propagated,

1ω1 = 1
0R

0ω0 + θ̇1
1ẑ1 (4.51a)

2ω2 = 2
1R

1ω1 + θ̇2
2ẑ2 (4.51b)

3ω3 = 3
2R

2ω2 (4.51c)

eeωee = 3ω3 (4.51d)

It is useful to note 0ω0, the angular velocity of the base of the manipulator,

is typically a zero vector as most manipulators are assumed to have a �xed

base. However, this allows the base frame of the manipulator to be de�ned as

a non-inertial frame, such as the rate of roll, pitch, and yaw of a submarine.

The velocity of link i+ 1 can derived in the general form of,

i+1vi+1 = i+1
i R

(
ivi + iωi × ipi+1

)
(4.52)

for a revolute joint, and,

i+1vi+1 = i+1
i R

(
ivi + iωi × ipi+1

)
+ ḋi+1

i+1ẑi+1 (4.53)
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for a prismatic joint. Eq. (4.53) incorporates the velocity due to the extension

of the link connected to the prismatic joint. The link velocities for the RRP

can be derived as,

1v1 = 1
0R
(

0v0 + 0ω0 × 0p1

)
(4.54a)

2v2 = 2
1R
(

1v1 + 1ω1 × 1p2

)
(4.54b)

3v3 = 3
2R
(

2v2 + 2ω2 × 2p3

)
+ ḋ3

3ẑ3 (4.54c)

3v3 = eeve (4.54d)

Similar to the angular velocity vector of the base frame, a velocity vector 0v0

can be de�ned to represent the velocity of the base frame of the manipulator.

This is equivalent to placing the entire manipulator in motion, such as the

forward velocity of the submarine.

The general formulation of the angular acceleration i+1ω̇i+1 of a link

due to a revolute joint is described as,

i+1ω̇i+1 = i+1
i Riω̇i + i+1

i Riωi × θ̇i+1
i+1ẑi+1 + θ̈i+1

i+1ẑi+1 (4.55)

Whereas, the general formulation of the angular acceleration of a link due to

a prismatic joint is simply,

i+1ω̇i+1 = i+1
i Riω̇i (4.56)
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The angular acceleration of each link can be then be derived as,

1ω̇1 = 1
0R

0ω̇0 + 1
0R

0ω0 × θ̇1
1ẑ1 + θ̈1

1ẑ1 (4.57a)

2ω̇2 = 2
1R

1ω̇1 + 2
1R

1ω1 × θ̇2
2ẑ2 + θ̈2

2ẑ2 (4.57b)

3ω̇3 = 3
2R

2ω̇2 (4.57c)

eeω̇ee = 3ω̇3 (4.57d)

The general form of the acceleration of link i + 1, i+1v̇i+1, can be

derived as,

i+1v̇i+1 = i+1
i R

(
iω̇i × ipi+1 + iωi ×

(
iωi × ipi+1

)
+ iv̇i

)
(4.58)

due to a revolute joint, and,

i+1v̇i+1 = i+1
i R

(
iω̇i × ipi+1 + iωi ×

(
iωi × ipi+1

)
+ iv̇i

)
+ 2i+1ωi+1 × ḋi+1

i+1ẑi+1 + d̈i+1
i+1ẑi+1 (4.59)

due to a prismatic joint which must account for Coriolis e�ects. Applying

Eq. (4.58) and Eq. (4.59), the speci�c equations for the acceleration of each

link can then be described as,

1v̇1 = 1
0R
(

0ω̇0 × 0p1 + 0ω0 ×
(

0ω0 × 0p1

)
+ 0v̇0

)
(4.60a)
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2v̇2 = 2
1R
(

1ω̇1 × 1p2 + 1ω1 ×
(

1ω1 × 1p2

)
+ 1v̇1

)
(4.60b)

3v̇3 = 3
2R
(

2ω̇2 × 2p3 + 2ω2 ×
(

2ω2 × 2p3

)
+ 2v̇2

)
+ 23ω3 × ḋ3

3ẑ3 + d̈3
3ẑ3 (4.60c)

eev̇ee = 3v̇3 (4.60d)

The inertial force, i+1Fi+1, and inertial moment, i+1Ni+1, acting on

link i+ 1 can now be evaluated using the forward propagated dynamic equa-

tions. First, the acceleration of center of mass of the link is determined,

i+1v̇ci+1 = i+1ω̇i+1×i+1pci+1+i+1ωi+1×
(
i+1ωi+1 × i+1pci+1

)
+i+1v̇i+1 (4.61)

where i+1pci+1 is the position vector of the center of mass of link i + 1 as

seen from frame i+ 1. That is,

1pc1 = [0, 0, 0]T (4.62a)

2pc2 = [0,−L2/2, 0]T (4.62b)

3pc3 = [0, 0,−L3/2]T (4.62c)

The inertial force acting on each link can now be derived as,

i+1Fi+1 = mi+1
i+1v̇ci+1

(4.63)
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where mi+1 is the mass of link i+ 1 and can be derived as the mass of the

volume of water which the link displaces, due to the assumption of neutral

buoyancy. The inertial moment for link i+ 1 is then represented by,

i+1Ni+1 = i+1Ii+1
i+1ω̇i+1 + i+1ωi+1 × i+1Ii+1

i+1ωi+1 (4.64)

The hydrodynamic forces acting on the links can now be derived using

the principles presented in Section 4.1. This completes the outward formu-

lation of the dynamic model. The revised inward solution for equations of

motion then become,

ifi = i
i+1R

i+1fi+1 + iFi + ifhi (4.65)

ini = iNi + inhi + i
i+1R

i+1ni+1 + ipCi
× iFi + ipi+1 × i

i+1R
i+1fi+1 (4.66)

to determine the force, ifi, and moment, ini, exerted on link i by link i− 1.

Where fhi and nhi is derived in Section 4.1 as Eq. 4.30a and Eq. 4.30b

respectively, and ipCi
describes the location of the centre of gravity of link i

with respect to the origin of frame i. The dynamic equations of a manipulator

allow the joint torques or joint forces (τi) to be calculated as a function of

joint type.

Revoluteτi = inTi
iẑi (4.67)

Prismaticτi = ifTi
iẑi (4.68)
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where ini is the moment vector experienced by joint i, ifi is the force vector

experienced by joint i, and ẑi is a unit vector corresponding to the degree of

freedom joint i constrains. It should be noted that the remaining components

of the force and moment are assumed to be supported by the structure of

the manipulator; that is, they are sustained by the joint which constrains the

relative degree of freedom.

4.3.3 Analytical Veri�cation of Spatial 3DOF Dynamic

Model

The spatial 3DOF dynamic model is veri�ed in two stages. The �rst being the

same as Section 4.2, where the model is tested in quiescent water to verify

its translational and angular components using 2D strip theory. A linear

constant acceleration test case is added, to the Section 4.2 test cases, to

verify the translational component of added mass. Although the submarine

will maintain a constant linear velocity during docking, the Spatial 3DOF

dynamic model accounts for linear acceleration of the manipulator base, i.e.

submarine acceleration, for completeness. Therefore, four quiescent water

veri�cation tests are presented:

� the manipulator moves in pure translation, extended perpendicular to

the onset �ow in quiescent water, with a forward velocity 0v0 = [1, 0, 0]T

m/s,

� the manipulator rotates about a �xed position in quiescent water, with
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a constant angular velocity θ̇1 = 0.1 rad/s,

� the manipulator rotates about a �xed position in quiescent water, with

a constant angular acceleration θ̈1 = 0.001 rad/s2,

� and the manipulator moves in pure translation, extended perpendicular

to the onset �ow in quiescent water, with a forward acceleration of

0v̇0 = [0.1, 0, 0]T m/s2.

Again, veri�cation tests one and two verify the linear and rotational portions

of Eq. (4.22) respectively as well as verifying both Eq. (4.24) and Eq. (4.25).

While veri�cation tests three and four verify the linear and rotational por-

tions of Eq. (4.23) respectively as well as verifying both Eq. (4.26) and

Eq. (4.27). The second stage of analytical testing will verify the Froude-

Krylov force Eq. (4.18) in the presence of waves. One veri�cation test is

presented,

� the manipulator moves in pure translation, extended perpendicular

to the onset �ow, with a forward acceleration of 0v̇0 = [0.1, 0, 0]T

m/s, while the �ow has an equal and opposite acceleration of U̇ =

[−0.1, 0, 0]T m/s2.

The �rst test case is veri�ed using Eq. (4.33) and Eq. (4.34). The

results are plotted in Figure 4.14 and Figure 4.15. The plotted results

correspond to the analytical results for test case one shown in Table 4.1.

Therefore, the linear drag component of the spatial 3DOF dynamic model is
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Figure 4.14: Resultant force from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
translation with a constant velocity of 1 m/s (Test Case 1 ).
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Figure 4.15: Resultant torque from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
translation with a constant velocity of 1 m/s (Test Case 1 ).
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veri�ed by the simpli�ed analytical result. Again, the simulation shows added

mass and inertial e�ects do not contribute to the required joint torque in

translation with a constant velocity as they are both functions of acceleration.

The second test case is veri�ed using Eq. (4.36) and Eq. (4.37). The

results of the spatial 3DOF dynamic model are plotted in Figure 4.16 and

Figure 4.17 corresponding to the analytical results for test case two shown

in Table 4.2. The spatial 3DOF dynamic model results are veri�ed by the

simpli�ed analytical result. Like test case one, the simulation shows added

mass and inertial e�ects do not contribute to the required joint torque when

rotating at a constant angular velocity about a �xed axis. This veri�es the

rotational drag component of the spatial 3DOF dynamic model.

The third test case is veri�ed using Eq. (4.38) and Eq. (4.39). The

results of the spatial 3DOF dynamic model are plotted in Figure 4.18 and

Figure 4.19 corresponding to the analytical results for test case three shown

in Table 4.3. The spatial 3DOF dynamic model results are veri�ed by the

simpli�ed analytical result. The result shows the force due to added mass

and the inertia is constant due to the constant angular acceleration. This

veri�es the rotational added mass component of the spatial 3DOF dynamic

model.

The analytical equations for the fourth case are derived similarly to

test case one. The analytical drag equation and torque due to drag are

identical to those of test case two, Eq. 4.33. and Eq. 4.34 respectively. The
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Figure 4.16: Resultant force from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
rotation with a constant angular velocity of 0.1 rad/s (Test Case 2 ).
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Figure 4.17: Resultant torque from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
rotation with a constant angular velocity of 0.1 rad/s (Test Case 2 ).
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Figure 4.18: Resultant force from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
rotation with a constant angular acceleration of 0.001 rad/s2 (Test Case 3 ).
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Figure 4.19: Resultant torque from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
rotation with a constant angular acceleration of 0.001 rad/s2 (Test Case 3 ).
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Figure 4.20: Resultant force from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
translation with a constant acceleration of 0.1 m/s2, with analytical force
result (fam = 58.02 N) denoted by circle. (Test Case 4 ).
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Figure 4.21: Resultant torque from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in quiescent water moving in pure
translation with a constant acceleration of 0.1 m/s2 (Test Case 4 ).

analytical equation for the linear force due to added mass can be de�ned as,

fam = ρ
π

4
do

2

∫ L

0

(u̇)dy (4.69)

The torque due to added mass and the inertia of the link are present with

acceleration. Therefore, the torque required at the joint can be de�ned as,

τi = Iθ̈ +

(
1

2
CDdoρ

∫ L

0

u2dy + ρ
π

4
do

2

∫ L

0

(u̇)dy

)
(4.70)

The results of the spatial 3DOF dynamic model are plotted in Fig-

ure 4.18 and Figure 4.19 corresponding to the analytical results for test case

four denoted by circle in Figure 4.20). The spatial 3DOF dynamic model
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Figure 4.22: Resultant force from Spatial 3DOF dynamic model, for sub-
merged cylindrical link RRP manipulator in moving water, with a �ow ac-
celeration of U̇ = [−0.1, 0, 0]T m/s2, moving in pure translation with a
constant acceleration of 0v̇0 = [0.01, 0, 0]T m/s2.

results are veri�ed by the simpli�ed analytical result. The result shows the

force due to added mass is constant due to the constant linear acceleration.

This veri�es the linear added mass component of the spatial 3DOF dynamic

model.

For the second stage test verifying the Froude-Krylov force, test case 5,

the analytical equations are derived from Eq. (4.18) and Eq. (4.14). The onset

acceleration, q̇, will equal zero due to the acceleration of the manipulator

base, 0v̇0, being equal in magnitude and opposite in direction of the �uid

acceleration, U̇. This results in no force due to added mass but a Froude-
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Krylov force being present with a value of fFK = −58.02 N.

The results of the spatial 3DOF dynamic model are plotted in Fig-

ure 4.22 corresponding to the analytical results for test case 5. The spatial

3DOF dynamic model results are veri�ed by the simpli�ed analytical re-

sult. This veri�es the Froude-Krylov force component of the spatial 3DOF

dynamic model.

4.3.4 Simulation of Spatial 3DOF RRP Dynamic Model

The spatial 3DOF model of the RRP fully mechanically actuated mechanism

can now be used to estimate the required actuator loads to track the estab-

lished design trajectories in Chapter 3. The design trajectories are rotated

into the base frame coordinates of the RRP serial manipulator and located

on a plane at yo=-8 m, for the average wave period shown in Figure 4.12.

The inverse kinematic model can then be employed to determine the joint

torques, for the average wave period shown in Figure 4.11. This is repeated

for both the minimum and maximum wave periods.

The spatial 3DOF dynamic model of the RRP serial manipulator can

be evaluated using the design trajectories. The model is simulated for both

quiescent water and for the presence of waves. First, the quiescent water

simulations are plotted in Figure 4.23 for an end e�ector design trajectory

with a period of 10.5 s, Figure 4.24 for an end e�ector design trajectory with

a period of 13.8 s, and Figure 4.25 for an end e�ector design trajectory with

a period of 17.5 s. Note the values of torque for joint two τ2 are larger than
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Figure 4.23: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged cylindrical link RRP manipulator in quiescent water showing (a)
joints one and two in detail and (b) all joint torques given an end e�ector
design trajectory with a minimum period (Tmin) of 10.5 s.

the estimated values of torque for the vertical plane using the planar model

in Section 4.8. This is due to the planar model strictly evaluating the motion

in the vertical plane, omitting the contribution of the horizontal forward

velocity component to the local onset velocity at the 2D cross=sectional

plane. Hence, the increase in τ2 in the spatial 3D dynamic model. Secondly,

waves are incorporated into the simulation resulting in the Froude-Krylov

force being present. The results are plotted in Figure 4.26 for the minimum

wave period, Figure 4.27 for the average wave period, and Figure 4.28 for the

maximum wave period.
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Figure 4.24: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged cylindrical link RRP manipulator in quiescent water showing (a)
joints one and two in detail and (b) all joint torques given an end e�ector
design trajectory with a average period (Tavg) of 13.8 s.
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Figure 4.25: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged cylindrical link RRP manipulator in quiescent water showing (a)
joints one and two in detail and (b) all joint torques given an end e�ector
design trajectory with a maximum period (Tmax) of 17.5 s.
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Figure 4.26: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged cylindrical link RRP manipulator in moving water with waves
showing (a) joints one and two in detail and (b) all joint torques given a
minimum wave period (Tmin) of 10.5 s.
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Figure 4.27: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged cylindrical link RRP manipulator in moving water with waves
showing (a) joints one and two in detail and (b) all joint torques given a
average wave period (Tavg) of 13.8 s.
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Figure 4.28: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged cylindrical link RRP manipulator in moving water with waves
showing (a) joints one and two in detail and (b) all joint torques given a
maximum wave period (Tmax) of 17.5 s.

4.3.5 Summary of Spatial 3DOF Dynamic Model Re-

sults

The spatial 3DOF RRP dynamic model accurately estimates the required

joint torques of the potential device. The results are supported by the 2D

dynamic model calculations derived in Section 4.2. The spatial 3DOF model

results are slightly larger in magnitude in horizontal plane, joint 1, this can

be attributed to the overall length of the simulated device. The 2D dynamic

model uses a �xed length of L=8 m. However, the 3D dynamic model varies

the overall link length d3 with time to maintain a nominal extension of yo=-

8 m alongside the submarine. The e�ect of waves, using unimodal linear

wave theory, is observed. It is interesting to note that dependent on the

75



position of manipulator within the phase of the wave, the wave current can

assist sustaining the position of the manipulator by e�ectively lowering the

required joint torque due to the direction of the �uid's acceleration vector.

Contrarily, the opposite can be true were the wave current may potentially

signi�cantly increase actuator torque requirements.

Overall, the results emphasize the requirement to streamline the de-

vice. Similar to Section 4.2 �ndings, the required joint torques are large and

primarily due to drag. Overall this model provides a basis for multi-body

simulations, although it should be validated experimentally.

4.3.6 Simulation of Spatial 3DOF Dynamic Model with

Self-Aligning Fairings

The spatial 3DOF dynamic model will be adapted to evaluate the e�ect of

using self-aligning fairings on the device. Three prototype variations will

be tested: one semi-faired design, with the base link faired, one semi-faired

design, with the end link faired, and one fully faired design.

Although, manipulating a linear actuator with self aligning fairings

may prove di�cult to implement in reality. A design which is partially faired,

and can retract and extend its faired section will be easier to implement

mechanically. It is hypothesized the extending joint should be faired as the

velocities and accelerations are larger at the end e�ector. While the design

is retracted it will be fully faired, only when it is extend to its maximum
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workspace bound will half the device be unfaired.

Self-aligning fairings are commonly used on tow cables to reduce

drag [17]. They have also been used successfully on small semi-submersible

vehicles [31]. The fairings are incorporated into the spatial 3DOF dynamic

model through decreasing the 2D dimensionless drag coe�cient by a factor

of 10. While both the force due to added mass and the Froude-Krylov force

remain the same as they are proportional to the breadth of the body rela-

tive to the onset �ow, i.e., the thickness of the fairings will be identical to

the diameter of the unfaired cylinder for these test conditions. It should be

noted the mass of the self-aligning fairings is not accounted for in the current

simulation and would still need to be neutrally bouyant. The self-aligning

fairings are assumed to align instantaneously. The results of the faired spatial

3DOF dynamic model are compared to the unfaired results in Figure 4.29

for an end e�ector design trajectory with a average period (Tavg) of 13.8 s

design trajectory in quiescent water. While, the results of the faired spatial

3DOF dynamic model are compared to the unfaired results in Figure 4.30

for an average wave period (Tavg) of 13.8 s design trajectory in the presence

of waves.

It is evident streamlining the device is required to produce a feasible

full scale design. As expected the fully-faired device produces the best result,

minimizing the overall required joint torques. The mechanical complexity

of implementing a telescoping fully faired device is large and may not be

merited. It is noted the end-faired design, as shown in Figure 5.1, also has
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Figure 4.29: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged faired link RRP manipulator in quiescent water showing (a) joint
one and (b) joint 2 given an average wave period (Tavg) of 13.8 s.

0 2 4 6 8 10 12 14
−15

−10

−5

0

5

10

15

20

25

30

Time [sec]

Jo
in
tT
or
qu
e
−
τ 1
[K
N
m
]

Cylindrical
Base−Faired
End−Faired
Full−Faired

(a)

0 2 4 6 8 10 12 14
−15

−10

−5

0

5

10

15

Time [sec]

Jo
in
tT
or
qu
e
−
τ 2
[K
N
m
]

Cylindrical
Base−Faired
End−Faired
Full−Faired

(b)

Figure 4.30: Resultant joint torque from Spatial 3DOF dynamic model, for
submerged faired link RRP manipulator in moving water with waves showing
(a) joint one and (b) joint 2 given an average wave period (Tavg) of 13.8 s.
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signi�cantly improved performance over the unfaired design.

The end-faired RRP device is the more feasible design as it balances

its mechanical complexity while minimizing the required actuation loads,

producing a more robust overall mechanically actuated design. The end-

faired RRP device will be used for further simulation and controller design.
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Chapter 5

Control

A controller for the mechanically actuated, end-faired, RRP mechanism,

shown in Figure 5.1, is developed to facilitate simulations of the docking

process. The controller provides the mechanism with the ability to follow

commanded set-point trajectories.

Conventional control schemes rely solely on the real-time feedback

they receive to manipulate their control signal for the next time step. Some

common conventional schemes are proportional-integral (PI), proportional-

integral-derivative (PID), and Dahlin. These schemes are prevalent in indus-

try, but have their shortfalls when dealing with non-linearities and actuator

dead zones. Model based predictive control (MPC) uses a known or estimated

model of the plant being controlled to minimize future predicted errors to

improve closed-loop response. MPC schemes are convenient as raw data can

be used potentially in real-time to develop the system models.
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Figure 5.1: End-faired RRP prototype, using cylindrical link and NACA0015
fairings.

Figure 5.2: A generic model of servo driven revolute joint.

5.1 Characterization of RRP Actuators

The motor drive type varies per joint. Joints one and two will use a geared

servo drive, as shown in Figure 5.2. Joint three will use a linear drive via a

lead screw, as shown in Figure 5.3.

The actuator's behavior can be simulated by developing its transfer

Figure 5.3: A generic model of a lead screw driven prismatic joint.
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function. The transfer function of the actuator is equivalent to the transfer

function of the plant, a controls term used to generically describe the system

being investigated. Individual transfer functions are developed for each joint

type. The transfer function is solved in Laplace form. The general transfer

function is derived for a DC motor with reference to the general block diagram

of the plant, shown in Figure 5.4. The torque produced by the motor through

its armature, τm, can be described as,

τm(s) =

(
Kτ

Ls+R

)(
V (s)− θ̇o(s)Kθ̇

)
(5.1)

where Kτ is the motor torque constant, L is the motor inductance, R is the

motor resistance, V is the input voltage, θ̇o is the motor velocity, and Kθ̇

is the motor back electro-motive force constant. The motor velocity can be

described as a function of the motor torque and load torque, τL, where,

θ̇o(s) =

(
1

Js+B

)
(τm(s)− τL(s)) (5.2)

J is the inertia of the motor drive, and B is the damping of the motor drive.

Substituting Eq. 5.1 into Eq. 5.2, the motor velocity can be described as a

function of input voltage and load torque, where,

θ̇o(s) =
KτV (s)− τL(s)(Ls+R)

JLs2 + (JR +BL)s+ (BR +KτKθ̇)
(5.3)
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Figure 5.4: Block diagram of plant model of direct drive DC motor.

Given,

θo(s) =
1

s
θ̇o(s) (5.4)

where θ̇o is the motor position. The motor position can be integrated from

Eq. 5.3 and is described as,

θo(s) =
KτV (s)− τL(s)(Ls+R)

JLs3 + (JR +BL)s2 + (BR +KτKθ̇)s
(5.5)

Similarly, the transfer function of the leadscrew actuator can be developed.

The leadscrew actuator consists of a DC motor connected to a leadscrew, a

traveler translates along the leadscrew due to the rotation of the DC motor

and the pitch (lead) of the screw. The position of the traveler can be related

to the position of the DC motor through the leadscrew's pitch gain, KLSp,

X(s) = KLSpθ(s) (5.6)
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Figure 5.5: Block diagram of plant model of leadscrew actuator using a direct
drive DC motor.

where X is the traveler position, and,

KLSp =
2π

λp
(5.7)

The torque load on the motor can be related to the force applied by the

traveler, fL, through,

τL = KLSτfL (5.8)

where KLSτ is the leadscrew force gain,

KLSτ =
fLλp
2πη

(5.9)

and η is the leadscrew e�ciency. Substituting Eq. 5.6, and Eq. 5.8 into

Eq. 5.5, the leadscrew transfer function for position as a function of load
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force and voltage input can be solved,

Xo(s) =
KτKLSpV (s)− FL(s)KLSτKLSp(Ls+R)

JLs3 + (JR +BL)s2 + (BR +KτKθ̇)s
(5.10)

Eq. 5.10 is di�erentiated to obtain the transfer function of the leadscrew

velocity,

Ẋo(s) =
KτKLSpV (s)− FL(s)KLSτKLSp(Ls+R)

JLs2 + (JR +BL)s+ (BR +KτKθ̇)
(5.11)

Given the speci�c transfer functions of the actuators response, the manipu-

lator can now be characterized for control.

The joint actuators are sized using the estimated joint torques for the

end faired RRP manipulator, shown in Figure 4.29, for the average wave

period of 13.8 s. The kinematics of each joint are also considered when sizing

the motor rpm and leadscrew pitch. Actuator parameters are approximated

using industry speci�cations from commercially available systems. All joints

are assumed to be ideal, �exibility and backlash within the motor drive will

not be modelled.

Motors are selected based on the kinematic and torque requirements

established for the average wave period and end-faired design case. Joint one

uses a Kollmorgen KBM-260H03-A (480 V) DC direct drive motor to simulate

its actuator, the speci�c motor parameters are given in Table 5.1. Similarly,

Joint two uses a Kollmorgen KBM-260H01-A (480 V) DC direct drive motor

for actuation, its parameters are displayed in Table 5.2. The third joint uses

a Kollmorgen KBM-17H01-B (480 V) DC direct drive motor connected to a
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Parameter Value Units

Kτ 119 N-m/A
Kθ̇ 68.6 V/rad/s
J 9.56 kg-m2

L 0.032 H
R 1.9 Ω
B 144486 N-m-s

Table 5.1: Joint one actuator parameters, approximated from a Kollmorgen
KBM-260H03-A (480 V) DC direct drive motor.

Parameter Value Units

Kτ 59.3 N-m/A
Kθ̇ 34.2 V/rad/s
J 4.88 kg-m2

L 0.016 H
R 1.06 Ω
B 64914 N-m-s

Table 5.2: Joint two actuator parameters, approximated from a Kollmorgen
KBM-260H01-A (480 V) DC direct drive motor.

24 mm Kerk LSSTKR-093-2000-XXXX leadscrew, the actuator parameters

are given in Table 5.3.

The speci�c actuator's response is modelled using a step test. A step

test consists of applying a unit step in input and observing the plants behavior

over a time, both step tests for a unit voltage and unit load torque input are

performed. From Eq. 5.5, the transfer function is discretized in software and

joint one position can be observed due to both a unit step input in voltage,

shown in Figure 5.6, and a unit step input of load torque, shown in Figure 5.8.

Using Eq. 5.3, the same process can be applied to observe the behavior of

the system velocity due to a unit step in voltage, shown in Figure 5.7, and
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Parameter Value Units

Kτ 0.681 N-m/A
Kθ̇ 0.393 V/rad/s
J 5.12E-5 kg-m2

L 0.018 H
R 6.02 Ω
B 0.884 N-m-s
λp 0.0508 m
η 0.85

Table 5.3: Joint three actuator parameters, approximated from a Kollmorgen
KBM-17H01-B (480 V) DC direct drive motor, and a 24 mm Kerk leadscrew
LSSTKR-093-2000-XXXX.

a unit step in load torque, as shown in Figure 5.9. Joint two response for

position step tests is shown in Figure 5.10 and Figure 5.12 for both unit

voltage and unit load torque respectively. Whereas, the velocity response

step tests due to unit voltage and unit load torque inputs are shown in

Figure 5.11 and Figure 5.13 respectively. Joint three uses Eq. 5.10, discretized

in software, to develop the characteristics of the actuator's position due to

a unit input voltage, shown in Figure 5.14, and unit input load force, as

shown in Figure 5.16. Repeating the process using Eq. 5.11, the velocity

response for joint three can be determined for a unit step in voltage, shown

in Figure 5.15, and unit step in load force, as shown in Figure 5.17.

The data from the actuator characterizing can now be used to develop

the controller. The normalized responses from the step tests are used to

predict the future response of the actuator when a given set of input voltage

and load is applied. This characteristic is the fundamental property used
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Figure 5.6: Unit step response of joint one actuator position due to unit
voltage input.

when implementing the model based predictive control methodology.

5.2 Dynamic-Matrix-Control

Dynamic matrix control (DMC) is a linear model predictive controller com-

monly used and studied. DMC uses the plant's, i.e., actuators, open-loop

step tests along with an optimization routine to minimize future predicted

errors to determine the best current control action, ∆U . DMC uses raw

measured data or simulated data to develop the controller which lends itself

well to implementing adaptive DMC control routines. DMC provides good

robustness, with simpli�ed tuning, and can compensate for non-linearities

within the plant to a reasonable degree. DMC is e�cient as it uses matrix
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Figure 5.7: Unit step response of joint one actuator velocity due to unit
voltage input.
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Figure 5.8: Unit step response of joint one actuator position due to unit
torque input.
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Figure 5.9: Unit step response of joint one actuator velocity due to unit
torque input.
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Figure 5.10: Unit step response of joint two actuator position due to unit
voltage input.
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Figure 5.11: Unit step response of joint two actuator velocity due to unit
voltage input.
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Figure 5.12: Unit step response of joint two actuator position due to unit
torque input.
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Figure 5.13: Unit step response of joint two actuator velocity due to unit
torque input.

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (seconds)

P
os

iti
on

(m
)

Unit Voltage

Figure 5.14: Unit step response of joint three actuator position due to unit
voltage input.
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Figure 5.15: Unit step response of joint three actuator velocity due to unit
voltage input.
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Figure 5.16: Unit step response of joint three actuator position due to unit
torque input.
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Figure 5.17: Unit step response of joint three actuator velocity due to unit
torque input.

algebra for computations. It is suitable for both single-input-single-output

(SISO) systems and multiple-input-multiple-output (MIMO) systems.

The conventional DMC control law is,

∆U =
(
ATA

)−1
AT (ysp − ŷ) (5.12)

where A is a dynamic matrix, ysp is a set point vector, and ŷ is a vector

of a predicted future plant response. The conventional control law can be

adapted to include the predicted e�ects due to a disturbance on the system,

and is given by,

∆U =
(
ATA

)−1
AT (ysp − ŷ −∆UdB) (5.13)
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where ∆Ud is a scalar value of the change in disturbance, i.e., load, and B

is a vector of the plant response due to a unit step in load. The modi�ed

DMC control law can be developed with reference to Figure 5.18. First a

prediction horizon, P , is de�ned as,

P =
Tss
dt

(5.14)

where Tss represents the time it takes the plant to reach at least 95% of its

steady state value, and dt is the time step. P is a scalar value and represents

the duration of the response in time which is being predicted in time steps.

A control horizon, nu, is also de�ned and represents how many future control

actions are predicted. It is useful to note although P is typically the length

of time intervals the system requires to reach 95% of its steady state, this can

be reduced to drive the system more aggressively or increased to reduce the

control actions. A control horizon of nu = 2 works well, it is important nu

is much less then P otherwise the controller will be unstable. Future control

errors, ei, are determined for nu = 2 using a convolution method,

e1 = (ysp1 − (ŷ1 + a1∆U0 + a0∆U1 + b1∆Ud) (5.15)

e2 = (ysp2 − (ŷ2 + a2∆U0 + a1∆U1 + b2∆Ud) (5.16)

e3 = (ysp3 − (ŷ3 + a3∆U0 + a2∆U1 + b3∆Ud) (5.17)

where ai is element i of the open loop response of the plant due to an input

95



Figure 5.18: Dynamic Matrix Control disturbance model diagram [4]
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voltage, and bi is element i of vector B. The errors de�ne a performance

index, I∆U ,

I∆U = e1
2 + e2

2 + e3
2 + . . . ep

2 (5.18)

which uses the method of least squares to de�ne the objective function for

the control action. The partial derivatives of I∆U with respect to ∆Ui can be

obtained from i =0. . .nu and equated to zero to solve for the control action

which minimizes the plant error.

∂I∆U

∂∆U0

= 0 (5.19)

∂I∆U

∂∆U1

= 0 (5.20)

Solving Eq. 5.19 and Eq. 5.20 for ∆Ui in vector format, the DMC control

law presented in Eq. 5.2 is determined,

∆U =
(
ATA

)−1
AT (ysp − ŷ −∆UdB)

where the dynamic matrix A is formulated using open loop response data,
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ai, for a given prediction horizon p and the control horizon nu.

A =



a1 0 0 · · · 0

a2 a1 0 · · · 0

a3 a2 a1 · · · ...

...
...

... · · · aP−nu

aP aP−1 aP−2 · · · aP−nu+1


(5.21)

The speci�c DMC algorithm consists of 15 primary steps and is presented in

Appendix A.

5.3 Controller Development

Typically robotic mechanisms are given a Cartesian point in space to follow

as a trajectory while their control signals are evaluated in joint space. Ini-

tially solving the inverse solutions of the mechanism's kinematic equations a

Cartesian position can be transcribed in terms of a joint angle to act as the

controller set point. This allows individual controllers to be developed for

each joint, simulating the RRP mechanism as three SISO systems operating

in parallel. Joint one and two both use the simulation routine depicted in

Figure 5.19 to control position. While joint three uses the simulation routine

represented in Figure 5.20 to control position. The spatial 3DOF dynamic

model is used to simulate load torques on the controller, the queiscent version

is used for all tests except when disturbance is injected in the form of wave
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Figure 5.19: Block diagram of position control model of a direct drive DC
motor.

Figure 5.20: Block diagram of position control model of leadscrew actuator
using a direct drive DC motor.

loading.

The position controller is developed using the open-loop data shown

in Figures 5.6 through 5.17. Position responses of the motor due to a unit

voltage input are used to develop the corresponding dynamic matrix for each

actuator. While the position responses due to a unit load torque are used

to generate the disturbance vector, B, for their respective actuator. The

prediction horizon for each actuator is determined from the 95% steady-state

interval of the velocity response due to a unit voltage input for each actuator.
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Joint Parameter Value

P 33
One λ∆U 1.01

Sample Rate 100 Hz
P 45

Two λ∆U 1.01
Sample Rate 100 Hz
P 48

Three λ∆U 1.01
Sample Rate 100 Hz

Table 5.4: Controller parameters for end-faired RRP mechanically actuated
manipulator simulation.

The velocity response is used to evaluate the prediction horizon because it

is di�cult to determine the steady-state value of a position response. The

steady-state value of the position response occurs when its slope becomes

constant, in other words, when its velocity reaches a constant value. It

should be noted all step tests per actuator must be preformed with the same

time step otherwise the prediction horizon will not be equivalent throughout

the data for the controller. A tuning parameter, λ∆U , referred to as move

suppression is used to improve controller performance. Move suppression is

a scalar value near one which multiplies the diagonal of the ATA term in

the control routine. This e�ectively shifts the roots of the predicted plant

used in the controller, allowing for more or less aggressive control actions

to be sent to the actuators. The speci�c controller parameters are given in

Table 5.4. These parameters are maintained for all test cases throughout

control simulations.
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The set point trajectory for the position simulation consists of two

phase, a deployment phase from 0 to 600 seconds where the device is extended

alongside the submarine to a steady-state position, and a tracking phase

consisting of 10 cycles of the AUV design trajectory at sea state 6 given

the average wave period of 13.8 s. The results of the total trajectory are

shown in Figure 5.21. Note the initial transient error at the beginning of the

trajectory is due to the simulation having limited data an the initial few time

steps, the real system will have measurable feedback from its sensors. The

controller appears to preform well during the deployment phase, however,

lags in the AUV tracking phase shown in Figure 5.22. Figure 5.23 shows

the controlled torques compared to the expected torques predicted by the

dynamic modelling. Although the actuated joint torques di�er slightly then

the predicted joint torques, the actuated joints torques behave similar in

phase and magnitude with the exception of joint one. The control torque

in joint one is larger then expected due to the fact it is always lagging the

set-point. This results in large control actions requiring larger torques to

bring the system back to its setpoint.

To quantitatively evaluate the controllers performance the error is

observed in Figure 5.24. The controller preforms well reaching a steady-state

set point like those during the deployment phase but has some di�culty

during tracking. Figure 5.25 shows the error during the AUV tracking phase.

This shows two interesting traits, the steady o�set in the x-axis error indicates

the joint one actuator is insu�cient in size to maintain the required position,
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Figure 5.21: RRP end-faired manipulator controlled position for deployment
phase and 10 cycles of AUV tracking at Sea-state (SS) 6.
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Figure 5.22: RRP end-faired manipulator controlled position for 10 cycles of
AUV tracking at Sea-state (SS) 6.
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Figure 5.23: RRP end-faired manipulator controlled position motor torques
for 10 cycles of AUV tracking at Sea-state (SS) 6.

and joint three's actuator appears to be to slow as its error oscillates evenly

in both positive and negative direction. All errors appear to converge to a

steady error pro�le after the �rst cycle. Figure 5.24 also shows an increase in

error near t = 300 s corresponding to the extension of the mechanism from

4 m to 8 m alongside the submarine. This error during extension is shown

in Figure 5.26 and again suggests the actuators, speci�cally joint one, may

be insu�ciently sized.

The e�ect of the sea-state on the controller performance is investi-

gated. The original controller is used to track AUV trajectories of reduced

sea-state with the comparison of absolute tracking error shown in Figure 5.27.

The results show a decrease in transient error with each sea-state, this is ex-

pected as the amplitude of the set point trajectory decrease with sea-state.
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Figure 5.24: RRP end-faired manipulator controlled position error for de-
ployment phase and 10 cycles of AUV tracking at Sea-state (SS) 6.
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Figure 5.25: RRP end-faired manipulator controlled position error for 10
cycles of AUV tracking at Sea-state (SS) 6.
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Figure 5.26: RRP end-faired manipulator controlled position error during
extension of manipulator to 8 m at Sea-state (SS) 6.

What is more interesting to note is regardless of sea-state the mean error,

shown in Figure 5.28, appear to converge to the same limit. This suggests the

system is limited by its parameters and controller more than its operating

conditions.

Tracking solely the transverse plane of the AUV trajectory is inves-

tigated, with results shown in Figure 5.29. The results show joint one is

incapable of sustaining the manipulator's perpendicular position to the sub-

marine. A comparison of the absolute error of �xing joint one during vertical

tracking opposed to controlling joint one during vertical tracking is shown

in Figure 5.30. The reduction in error is not signi�cant and does not justify

constraining the device to operating strictly in 2DOF. A 3DOF device will

increase the probability of capture as it increases the devices workspace..
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Figure 5.27: RRP end-faired manipulator controlled position error for 10
cycles of AUV tracking for ranging sea-states (SS).
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Figure 5.28: RRP end-faired manipulator controlled position mean error for
10 cycles of AUV tracking for ranging sea-states (SS).
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Figure 5.29: RRP end-faired manipulator controlled position for 10 cycles of
AUV z-axis tracking at Sea-state (SS) 6.

Again, the error approaches a similar mean error which indicates the system

is reaching a performance limit and a enhanced controller is required.

Indirect position control using a velocity controller is investigated.

Hybrid position velocity controllers are often used when controlling motor

positions. The controllers are typically set up as a mode selector scheme

where the manipulated variable switches between a position error or velocity

error based evaluation. The velocity controller can provide improved perfor-

mance as it increases the order of the denominator of the transfer function

which is being controlled, reducing the phase margin the controller must over-

come when operating. However, controlling position using a velocity based

controller is highly dependent on the initial position of the device. This is

why both position based and velocity based position controllers are used in
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Figure 5.30: Comparison of RRP end-faired manipulator controlled posi-
tion error for 10 cycles of AUV z-axis tracking at Sea-state (SS) 6, given a
motorized joint one versus a mechanically �xed joint one during tracking.

Figure 5.31: Block diagram of velocity control model of a direct drive DC
motor.
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Figure 5.32: Block diagram of velocity control model of leadscrew actuator
using a direct drive DC motor.
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Figure 5.33: RRP end-faired manipulator position using velocity control for
10 cycles of AUV tracking at Sea-state (SS) 6.
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Figure 5.34: RRP end-faired manipulator position error using velocity control
for 10 cycles of AUV tracking at Sea-state (SS) 6.

parallel. The control block diagrams are modi�ed and given in Figure 5.31

and Figure 5.32 for both joint one and two, and joint three respectively. The

velocity controller uses the open-loop velocity responses to generate its dy-

namic matrix a disturbance prediction vector. The results of the velocity

based position controller are shown in Figure 5.33 with set point error given

in Figure 5.34. The velocity based controller does show an improvement

in tracking error over strictly position control shown in Figure 5.35. The

velocity based controller can reduce the tracking error in position to below

the 10 mm maximum error design objective, however, the response is highly

transient.

To evaluate the robustness of the controllers a disturbance load was

injected on the motor, in this case wave loading, i.e., the Froude-Krylov
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Figure 5.35: Comparison of position control error for 10 cycles of AUV track-
ing at Sea-state (SS) 6 between position based control versus velocity based
control.

force. When the e�ects of the waves are introduced into the simulation the

position controller can overcome the disturbance and drive the system back

to relatively the same error pro�le. This is shown by comparing the vari-

ance in absolute tracking position error with and without disturbance shown

in Figure 5.36. Despite an initial transient variance the position controller

preforms relatively the same proving DMC is robust. When comparing

the variance in error due to a disturbance with the velocity based position

controller, Figure 5.37 shows an steady o�set error due to the system be-

ing shifted with the initial disturbance. The disturbance changes the initial

position, so although the velocity controller handles the disturbance well in

terms of velocity it is incapable of ever correcting the systems position it can
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Figure 5.36: Variation in position control error due to disturbance using
position based control for 10 cycles of AUV tracking at Sea-state (SS) 6.
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Figure 5.37: Variation in position control error due to disturbance using
velocity based control for 10 cycles of AUV tracking at Sea-state (SS) 6.
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only maintain it.

Overall, the DMC control scheme displays good promise. However,

the system has a �nite time constant which can not be overcome as is. A

further enhanced controller and possibly faster response actuators are re-

quired to obtain good tracking of the nonlinear setpoint trajectory. This is

necessary to minimize e�ects of phase lag and attenuation.
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Chapter 6

Conclusion

AUV kinematics were simulated using unimodal linear wave theory, pro-

viding a basis for design trajectories for the manipulator. Hydrodynamic

forces acting on the RRP mechanically actuated manipulator were success-

fully modelled using the Morrison equation. The hydrodynamic model was

integrated into the conventional recursive Newton-Euler manipulator dynam-

ics to produce an overall dynamic model for the manipulator.

It is shown drag is the largest contributer to hydrodynamic loading,

proving streamlining of the device is essential to a feasible design. It is

suggested the device be faired using self-aligning fairings. The end-faired

RRP device is deemed the most feasible design as it balances its mechanical

complexity while minimizing the required actuation loads, producing a more

robust overall mechanically actuated design.

Actuation force may be reduced depending on wave direction. How-
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ever, more sophisticated wave modelling is required to be conclusive. It may

be possible to use wave loading to assist the mechanism when choosing when

to intercept the AUV.

The DMC controller preforms well in tracking but does not reduce

the absolute error to the design objective of 10 mm absolute error. The dmc

position based controller is capable of minimizing the absolute error between

the end e�ector and AUV within 0.17 m and sustains disturbances. While

the velocity based dmc controller is capable of minimizing the absolute error

between the end e�ector and AUV to within the 10 mm design goal, however,

the velocity based controller can not accomodate position based disturbances.

The initial control simulations show control is limited by the plant properties,

i.e., motor parameters. The time constant of the plant is �nite and limits the

performance the controller is capable of achieving, i.e., steady-state error,

during nonlinear tracking. In other words, the DMC controller can only

drive the plant so fast and is incapable of overcoming this limit without a

more enhanced controller design structure and/or actuators. The simulations

show constraining the manipulator to 2DOF, tracking only the vertical plane

of the AUV, does not signi�cantly improve the performance. Varying sea-

state does e�ect the transient error during non-linear tracking. However,

the mean error, i.e., steady-state error, seems to converge to the same limit

regardless of sea-state. This suggests one controller can be implemented for

all sea-states, although the current controller and plant properties need to be

improved as the system has reached its performance limit. A hybrid position
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velocity DMC controller was suggested and shows the error can potentially

be reduced using velocity control. The velocity controller improved error

within the 10 mm design limit as long as the manipulator is in the correct

initial position prior to AUV tracking. The velocity based position controller

does not handle disturbances well, if implemented it will have to operate in

parallel with a direct position based controller to regain a steady position

when the manipulator exceeds an acceptable position error during tracking.

The hybrid position velocity DMC controller shows merit in investigating an

enhanced control scheme for the mechanism.

Overall the design appears to be feasible. The device must be stream-

lined and su�ciently sized actuators are required. Constraining the device

to solely actuate in the vertical plane does not appear to signi�cantly im-

prove performance, a full 3DOF device remains possible. The critical design

problem to overcome for the full scale device is its controller. Regardless of

the mechanism's design if control is not robust it will be incapable of AUV

capture.

Recommendations

� Further analysis of self-aligning fairings should be completed. Perform

testing to determine the optimal width of fairings and verify their load-

ing e�ects on the device.

� Improve modelling to include vibrational e�ects and de�ne minimum
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link diameters to improve streamlining.

� Determine exact actuator speci�cations required for full scale device or

prototype.

� Revise controller models using the real device through open-loop test-

ing.

� Investigate more advanced adaptive controller to improve performance.

Possibly generate open-loop plant data on the �y using initial condi-

tions of the current state of the device. Also, investigate more advanced

optimization routines within the DMC architecture to minimize error.
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Appendix A

DMC Algorithm

function [V,sigma,gamma,yhat,ysp,chat,U,phi]=dmc...

(motorstep,loadstep,P,Nu,alpha,lambda,ym,ysp...

,yspf,yhat,Umax,Umin,U,chat,tau_L,tau_L_m1)

%Outputs:

%V,sigma,gamma,yhat,ysp,chat,U,phi

%Inputs:

%motorstep,loadstep,P,Nu,alpha,lambda,ym,ysp,yspf,yhat,...

%Umax,Umin,U,chat,tau_L,tau_L_m1

Uold=U;

deltaU = zeros(Nu,1);

delta_Ud=zeros(Nu,1);
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phi=zeros(P,1);

Au=zeros(P,Nu);

Aload=zeros(P,Nu);

%Build A matrix for motor position due to unit voltage

for i = 1:1:Nu

for j = 1:1:P

if(j<i)

Au(j,i) = 0;

else

Au(j,i) = motorstep(j−i+1);

end

end

end

%Build A matrix for motor position due to unit load

for i = 1:1:Nu

for j = 1:1:P

if(j<i)

Aload(j,i) = 0;

else

Aload(j,i) = loadstep(j−i+1);

end

end

end

%Create Big A

125



AtA = Au'*Au;

%Move Surpression

for i=1:size(AtA)

AtA(i,i) = AtA(i,i)*lambda;

end

%Check the suitability of Big A

sigma=det(AtA);

gamma=cond(AtA);

for i=1:1:P

if(i==1)

ysp(i,1)=ym;

else

ysp(i,1)=alpha*ysp(i−1)+(1−alpha)*yspf;

end

end

for i=1:1:P

phi(i,1)=ym−chat;

end

yhat=yhat+phi;

delta_Ud(:,1)=(tau_L−tau_L_m1);
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err(:,j)=ysp(2:end)−yhat;

deltaU(:,1)=(inv(AtA))*Au'*(err(:,j)−(delta_Ud(1)*Aload(:,1)));

U(:,1)=Uold+deltaU;

for i=1:Nu

if(U(i)>Umax)

U(i)=Umax;

elseif(U(i)<Umin)

U(i)=Umin;

else

U(i)=U(i);

end

end

V=U(1);

deltaU=U−Uold;

yhat=yhat+Au(:,1)*deltaU(1);

chat=yhat(1);

for i=1:1:P−1

yhat(i)=yhat(i+1);

end
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