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ABSTRACT 

This thesis reports on potato crop suitability mapping along the Upper Saint John 

River Valley in New Brunswick based on province-wide available high-resolution light 

detection and ranging (LiDAR) derived digital elevation model (DEM). Potato crop 

suitability rating was done by way of multi-criteria evaluation accounting for (i) topsoil 

and subsoil texture, (ii) soil calcareousness, (iii) soil coarse fragment content, (iv) depth- 

to-compaction of soil, (v) soil drainage (depth-to-water table (DTW)), and (vi) elevation 

(slope percent). It was found that: 

1. the tax assessment values of farmlands and farm and woodland combinations reflect the 

soil suitability for potato cropping across the Saint John River Valley, as mapped; 

2. some of the field-surveyed soil property and associated tuber yield variations can be 

quantified and mapped using the LiDAR-DEM derived flow channels and associated DTW 

layers; this verification was done based on three published field-survey reports that deal 

with potato cropping near Saint-André, Florenceville, and Hartland, NB. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1. Problem Statement 

In New Brunswick (NB), potatoes are seeded and harvested approximately 20,000 

hectares (ha) annually, thereby making them the main crop grown in the province 

(Government of Canada, 2020). In Canada, the five main producing provinces are Prince 

Edward Island, Manitoba, Alberta, with NB in fourth place (Government of Canada, 2020). 

This crop produced 1.19 billion dollars for the Canadian economy in 2017 (Government of 

Canada, 2020). NB produced 687,601 megagram (Mg) of potatoes in 2017 which are 

intended to be either processed (63 %, approximate yield of 22 Mg/ha), for seed (19 %, 

approximate yield of 7 Mg/ha), or for fresh market (18 %, approximate yield of 6 Mg/ha; 

Government of Canada, 2020). The top five registered seed potatoes varieties in the 

province are Russet Burbank, Atlantic, Shepody, Goldrush, and Innovator (Government of 

Canada, 2020). Together, primary, secondary, and other crop-processing activities 

including trading and selling have become an important revenue source for the province. 

Currently, there is an interest in further expanding potato crop production in NB, 

especially across forested lands deemed most accessible and suitable for farming. 

Expanding potato production would in part: 

1. enhance NB’s food security; 

2. create new farming opportunities for existing and prospective agricultural 

producers; 

3. generate employment opportunities by way of crop processing and marketing 

(Government of New Brunswick, 2018). 
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To this extent, there are methods that can be used to locate additional arable lands 

across forested and non-forested lands, as reviewed below. In this regard, NB’s Department 

of Agriculture, Aquaculture and Fisheries (DAAF) launched a site in 2018 for locating 

suitable areas for growing apples, corn, soybeans, grapes, hemp, potatoes, and small grains. 

However, the maps so produced do not account for cross-province variations in soil type, 

with slope and soil drainage impacts on cropping remaining poorly resolved, as illustrated 

in Figure 1.1 and Figure 1.2 (Government of New Brunswick, 2018). 

 

Figure 1.1. Southwestern excerpt of NB-wide apple crop suitability mapping: areas deemed 

too wet (black), unsuitable (red), fair (yellow), suitable (green), and open waters (white). 

Source: Government of New Brunswick (2018). 



3 

 

 
Figure 1.2. Apple (top image) and potato (bottom image) crop suitability mapping details 

centered on Pocologan, NB (red box in Figure 1.1), with the 1 meter (m) hillshaded light 

detection and ranging (LiDAR)-derived digital elevation (DEM) as background. Areas are 

seen to be (i) fair to suitable when located on flat to slightly sloping uplands (yellow to 

green), (ii) unsuitable when slopes are too steep (red), or lead into depressions, wetlands, 

and open waters (transparent to grey). Note the wider suggested uplands suitability 

conditions for potato than for apple cropping. Source: Government of New Brunswick 

(2018). 
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1.2. Crop Suitability Rating Schemes 

 Practices pertaining to crop suitability ratings by soil, land and climate have been 

reviewed recently by, e.g., Akpoti et al. (2019), Moloudi & Mahabadi, (2019) and Mugiyo 

et al. (2021) as represented in Figure 1.3. 

Traditional methods (TMs) use biophysical crop, soil, and climate characteristics 

to perform - by hand or by computer - qualitatively and quantitatively simple land 

suitability assessments for individual land parcels from suitable to fair and unsuitable for 

local to region-wide. Typically, TM-based crop suitabilities are at first rated individually 

by each growth-affecting factor. The ratings so assigned involve additions, subtractions, 

multiplications, and/or result-affecting transformations as deemed appropriate. An 

example of this is the Land Suitability Rating System (LRSL) developed by Agri-Food and 

Agriculture Canada (Agronomic Interpretations Working Group, 1995). Its cross-Canada 

data layer requirements refer to: 

1. Climate: mean annual/seasonal temperatures, precipitation amounts, and frost 

conditions. 

2. Soils: water-holding capacity, texture, structure, organic matter (OM), 

uncompacted soil depth, pH, salinity, sodicity, soil temperature soil parent material, 

drainage, and slope. 

3. Landscape surface expressions, surface deposits, waterbodies, wetlands, and 

bedrock formations. 

4. Vegetation cover: forests, grasslands, and deserts. 

 Another widely known TM example using similar information is the Storie Index 

method for rating soils for land use and productivity across California in original and 
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revised form (Storie, 1932; O’Green et al., 2008). The crop suitability rating and mapping 

scheme as it currently exists for NB also represents a TM example, using topographic 

positioning as the dominant factor. 

 Apart from TM, modern crop rating schemes also involve (Mugiyo et al., 2021; 

Figure 1.3): 

1. Analytical hierarchy processes (AHPs). 

2. Fuzzy logic. 

3. Machine learning (ML). 

4. Crop simulation methods (CSMs).  

 
 

Figure 1.3. Percentage distribution of land suitability rating techniques among 101 

literature-based articles (1993-2019; left), including the extend of combining these 

techniques (right) as reviewed by Mugiyo et al. (2021). In all of this, there has been a 

transition from simple schemes to increasingly complex rating computations, from local to 

region-wide applications. 
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1.3. Literature on Potato Crop Suitability Rating 

 Table 1.1 provides a brief literature review of criteria and methods used specifically 

for potato crop suitability mapping. These also differ by local to regional extent, with 

climate-specific rating factors dominating across large regions (Zhao et al., 2018; Wang et 

al., 2021). In this, topography, climate and soil property factors are important for local 

evaluations. Among these, the rating scheme employed by Trigoso et al. (2020) is the most 

complex by also considering (i) soil nutrient status, (ii) socio-economical transportation, 

and (iii) crop processing factors in relation to distance to roads and rivers. Climatic factors 

pertaining to precipitation, air temperature, and evapotranspiration are used to assess the 

extent to which moist soil conditions are naturally maintained across well-aerated potato-

growing fields. According to Zhao et al. (2018), wind speed and relative humidity also 

matter, and especially in dry regions that are subject to desiccating winds. 

 The extent to which soil moisture conditions vary locally can best be revealed 

through high-resolution GIS-based slope and soil drainage mapping. To do so, Trigoso et 

al. (2020) used a slope-determining DEM at 12.5 m spatial resolution. Asfaw et al. (2017) 

used DEM data at 30 m resolution (resampled to 20 m) and Daccache et al. (2012) used 

DEM data at 25 m resolution. Wang et al. (2021) and Zhao et al. (2018) only used GIS to 

infer region-wide climate differences from existing weather station information. Thus far, 

best GIS-determined soil drainage assessment across fields and regions are obtained 

through DEMs at a 1 m spatial resolution, especially when done in connection with DEM-

determined flow directions, flow accumulations, and raster-to-shapefile stream flow-

channel delineations (D8; Tarboton, 1997; Murphy et al., 2009).   
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In brief, AHP refers to complex multi-criteria evaluation by weighing each crop 

suitability criterion through pairwise land parcel comparisons. Fuzzy logic provides 

plausible rating ranges rather than single values for each land parcel. CSMs deal with crop 

growth simulations by crop type, soil type, and daily weather. Among the ML methods, 

random forest classification is a technique that can be used to expand crop suitability 

ratings as determined for specific land parcels across entire regions based on GIS-layered 

crop type, topography, and climate factors (GIS: geographic information system). Further 

ML developments toward precision agriculture (PA) and forestry currently focus on 

enhancing the digitized resolution of GIS-layered information for crop-affecting soil 

properties such as soil texture, depth, density, OM content, coarse fragment (CF) content, 

and topographic position, as available from existing data coupled with digital soil mapping 

(DSM; Furze, 2018). 

Table 1.1. Recent literature criteria and methods used in making potato crop land suitability 

analysis. 

Authors and Location Criteria Method 

Trigoso et al. (2020) 

Amazonas, Peru 

- Mean annual temperature 

- Mean annual precipitation 

- Elevation 

- Terrain slope 

- Terrain aspect 

- Land use 

- Distance to rivers 

- Distance to roads 

- Soil texture 

- Soil pH 

- Organic matter 

- Nitrogen 

- Phosphorus 

- Potassium 

- Cation exchange capacity 

- Electrical conductivity 

AHP with remote 

sensing and GIS DEM 

evaluation 
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Asfaw et al. (2017) 

Amhara Region, 

Ethiopia 

- Elevation 

- Slope 

- Soil type 

- Mean annual rainfall 

- Temperature variation 

- Poor crop management 

Combination of modern 

multi-criteria decision 

making and with GIS 

DEM evaluations 

Daccache et al. 

(2012) 

England, Wales 

- Root depth 

- Growing season 

- Texture 

- Organic matter 

- Structure 

- Slope 

- Stoniness 

- Rainfall 

- Evapotranspiration 

- Temperature 

Modelling using pedo-

climatic functions and 

GIS DEM evaluations 

Yusianto et al. (2020) 

Wonosobo, Indonesia 

- Altitude 

- Soil texture 

- Slope percentage 

- Rainfall 

- Temperature 

Multi criteria evaluation, 

with GIS DEM 

evaluations 

Wang et al. (2021) 

Across China 

- Annual precipitation 

- Annual average minimal 

temperature 

- Average temperature in the 

coldest month 

- Sunshine duration 

Maximum entropy 

model (machine 

learning), with GIS 

based weather station 

interpolations 

Zhao et al. (2018) 

Across Northern 

China 

- Maximal and minimal air 

temperature 

- Average air temperature 

- Precipitation 

- Solar radiation 

- Relative humidity 

- Wind speed 

Fuzzy mathematics with 

GIS based weather 

station interpolations 

Figure 1.4 provides a 278 square kilometres (km2) potato crop suitability mapping 

example (Trigoso et al., 2020). This example is centered on the Jucusbama and Tincas 

watersheds within the Luya Province in southern Peru and is based on the AHP rating 
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criteria summarized in Table 1.1. As shown, climate, soils and topography influenced this 

rating scheme equally, followed by transportation proximity to roads and rivers.  

 

Figure 1.4. A mapped potato crop suitability rating example, located in southern Peru 

(Luya Province), as reported by Trigoso et al. (2020), with details in Table 1.1 above. In 

this example, climate and soil factors were determined to be the most crop suitability 

restrictive, while the factors relating to slope as well as crop processing and marketing were 

less so. 

1.4. Research Objective 

 The objective of this thesis is to address the issue of potato crop suitability rating 

by taking advantage of the following province-wide available data layers: 

1. The LiDAR-DEM coverage at 1 m resolution raster format. 

2. The forest soils map, available as a shapefile. 
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3. Shapefiles delineating the open water bodies, wetlands, flow channels, and 

individually held properties across the province. 

 The objectives and technical aspects for this research refer to: 

1. Producing a LiDAR-based potato crop suitability map along the Upper Saint John 

River Valley at a high 1 m spatial resolution using multi-criteria evaluation. 

2. Validating the produced LiDAR-based potato crop suitability map by addressing 

the extent to which soil factors (potassium content, calcium (Ca) content, 

phosphorus content, potato tuber yield, electrical conductivity (EC), clay content, 

and soil moisture (SM) reflect soil quality by way of published records (Perron et 

al., 2018). 

3. Addressing the extent to which the assessed market value of farmlands and 

woodlands increase with increased crop suitability. 

4. Validating the produced LiDAR-based potato crop suitability map by comparing 

results with DSM- and GIS- derived data layers. 

1.5. Thesis Structure 

This thesis has seven chapters: 

1. Chapter 1: General Introduction. 

2. Chapter 2: Potato Crop Suitability Mapping. This chapter deals with the specific 

formulations by soil property as per the NB forest soil map, and NB-wide LiDAR 

DEM derived depth to water (DTW) and slope coverage. 

3. Chapter 3: Mapping Results, Qualitative Evaluations. Presented in this chapter are 

example collages for specific areas of interest, each collage done in four parts: 

a. Hillshaded DEM. 
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b. Hillshaded DEM with crop suitability layer overlaid. 

c. Satellite image(s). 

d. Satellite image(s) with crop suitability layer overlaid. 

The crop suitability components of these collages are also compared with the 

current coarse-gridded NB crop suitability rating results, with parcel identifiers (PIDs) flow 

channels with > 4 ha upslope flow accumulations, wetlands, water bodies, and roads 

overlaid where and as applicable.  

4. Chapter 4: Parcel Account Number Generated Results. This chapter deals with 

farmlands and woodlands parcel account numbers (PANs) assessment values in 

relation with the thesis-derived potato crop suitability mapping results. 

5. Chapter 5: Comparisons of Published Field-Generated Crop and Soil Data with 

DSM- and GIS-Generated Data Layers. This chapter relates published on-site field 

data pertaining to electrical conductivity, tuber yield, soil moisture, and mineral 

contents to the crop suitability informing GIS data layers, at a 1 m resolution 

(Perron et al., 2018).  

6. Chapter 6: Re-Examining Soil Variations Across a Hummocky Field Under 

Intensive Potato Production Using a Cartographic Depth-to-Water Mapping 

Protocol. 

7. Chapter 7: Summaries, Conclusions, and Suggestions for Future Work. 

 

 

 

 



12 

 

1.6. Literature Cited 

Agronomic Interpretations Working Group. 1995. Land Suitability Rating System for 

Agricultural Crops: 1. Spring-seeded small grains. Edited by W.W. Pettapiece. 

Tech. Bull. 1995-6E. Centre for Land and Biological Resources Research, 

Agriculture and Agri-Food Canada, Ottawa. 90 pages, 2 maps. 

Akpoti, K., Kabo-bah, A. T., & Zwart, S. J. 2019. Agricultural land suitability analysis: 

State-of-the-art and outlooks for integration of climate change analysis. 

Agricultural Systems, 173, 172–208. 

Asfaw, M. 2017. Agricultural Land Suitability Analysis for Potato Crop by Using GIS and 

Remote Sensing Technology, in the Case of Amhara Region, Ethiopia. Journal of 

Biology, Agriculture and Healthcare, 7, 5-16. 

Daccache, A., Keay, C., Jones, R. J. A., Weatherhead, E. K., Stalham, M. A., & Knox, J. 

W. 2012. Climate change and land suitability for potato production in England and 

Wales: Impacts and adaptation. The Journal of Agricultural Science, 150(2), 

161‑177. 

Furze, S. 2018. A high-resolution digital soil mapping framework for New Brunswick, 

Canada [PhD Thesis, University of New Brunswick]. 

Government of Canada. 2020. Potato mark information review, 2020-2021. Retrieved 

from: https://agriculture.canada.ca/en/agriculture-and-agri-food-canada/canadas-

agriculture-sectors/horticulture/horticulture-sector-reports/potato-market-

information-review-2020-2021 

Government of New Brunswick. 2018. Agriculture Site Suitability. Retrieved from: 

https://www2.gnb.ca/content/gnb/en/departments/10/agriculture/content/agricultur

e-suitability.html. 

Moloudi, A., & Mahabadi, N. Y. 2019. Quantitative and qualitative land suitability 

assessment for rice cultivation, North of Iran. Polish Journal of Soil Science, 52(2), 

195–210. 

Mugiyo, H., Chimonyo, V. G. P., Sibanda, M., Kunz, R., Masemola, C. R., Modi, A. T., & 

Mabhaudhi, T. 2021. Evaluation of land suitability methods with reference to 

neglected and underutilised crop species: A scoping review. Land, 10(2), 1–24. 

Murphy, P. N. C., Ogilvie, J., & Arp, P. A. 2009. Topographic modelling of soil moisture 

conditions: A comparison and verification of two models. European Journal of Soil 

Science, 60(1), 94–109. 

O’Geen, A. T., Southard, S. B., Southard, R. J. 2008. A Revised Storie Index for Use with 

Digital Soils Information. ANR Publication 8335. 

Perron, I., Cambouris, A. N., Chokmani, K., Gutierrez, M. F. V., Zebarth, B. J., Moreau, 

G., Biswas, A., & Adamchuk, V. 2018. Delineating soil management zones using 

a proximal soil sensing system in two commercial potato fields in New Brunswick, 

Canada. Canadian Journal of Soil Science, 98, 724–737. 



13 

 

Storie, R. 1978. Storie index soil rating. Oakland: University of California Division of 

Agricultural Sciences. Special Publication 3203.  

Tarboton, D. G. 1997. A new method for the determination of flow directions and upslope 

areas in grid digital elevation models. Water Resources Research, 33, 309-319. 

Trigoso, D. I., López, R. S., Briceño N. B. R., López, J. O. S., Fernández, D.G., Oliva, M., 

Huatangari, L. Q., Murga, R. E. T., Castillo, E. B., & Gurbillón, M. Á. B. 2020. 

Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas 

Microwatersheds (Amazonas, NW Peru): AHP and RS-GIS Approach. Agronomy, 

10(12), 1898. 

Wang, C., Shi, X., Liu, J., Zhao, J., Bo, X., Chen, F., & Chu, Q. 2021. Interdecadal variation 

of potato climate suitability in China. Agriculture, Ecosystems and Environment, 

310, 107293. 

Yusianto, R., Dian, U., Semarang, N., Marimin, M., Suprihatin, S., & Hardjomidjojo, H. 

H. 2020. Spatial Analysis for Crop Land Suitability Evaluation: A Case Study of 

Potatoes Cultivation in Wonosobo, Indonesia. South China University of 

Technology. 313-319. 

Zhao, J., Zhan, X., Jiang, Y., & Xu, J. 2018. Variations in climatic suitability and planting 

regionalization for potato in northern China under climate change. PLoS ONE 13, 

1–19. 

 

 

 

 

 

 

 

 

 

  



14 

 

CHAPTER 2: POTATO CROP SUITABILITY MAPPING 

2.1. Introduction 

 To expand potato (Solanum tuberosum) cropping further in NB while sustaining 

existing cropping areas, it is important to determine which other areas would also be 

suitable for this production. To this effect, there are already several province-wide crop 

suitability maps in place (Government of New Brunswick, 2018). However, these maps – 

derived from a 70 m resolution DEM – are quite coarse, thereby remaining poorly resolved 

in terms of field-specific slope and drainage conditions, and as yet do not address local to 

regional variations in soil type and climate (Government of New Brunswick, 2018). The 

procedures described in this chapter are centered on improving this for the Upper Saint 

John River Valley in NB (Figure 2.1). Doing so was facilitated by: 

1. The province-wide 1 m spatial resolution LiDAR-DEM coverage, to portray flow 

channels, slope, and soil drainage. 

2. The forest soils map for NB to characterize the overall soil conditions within and 

across field and forest properties (Colpitts et al., 1995). 

3. Province-wide data layers for growing degree days (GDDs), frost-free days (FFDs), 

waterbodies, wetlands, roads; farm and wood lands properties, forested and non-

forested areas, and building footprint. These layers provide contextual information 

about local variations in climate, transportation, and socioeconomic conditions. 

The workflow that was needed to track, evaluate, combine, and map the rating factors, 

criteria, and evaluations is presented in Table 2.1. The overall objective is to produce potato 

crop suitability maps that can be used for assessing in-field and farm-to-farm variations by 

crop type, soil type, slope, and drainage in an effort to expand doing so across NB.  
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Figure 2.1. Workflow for addressing rating factors and criteria in the development of potato 

crop suitability mapping by addressing soil type, drainage, slope, and climate conditions. 

2.2. Methods 

2.2.1. Study Area 

The study area stretches from Edmundston (northwestern boundary) and Saint-

Quentin (northeastern boundary) southwards to Canterbury (southern boundary; Figure 

2.2). This area is comprising most of the potato cropping activities in NB. This being so, 

this area enables direct comparisons between crop suitability mapping with actual field 

layouts and current property-by-property taxation levels. 
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Figure 2.2. NB basemap with study area (yellow boundary) used for LiDAR-based potato 

crop suitability mapping and evaluation. Basemap source: GeoNB. 

2.2.2. Data 

The 1 m resolution LiDAR-generated DEM raster for NB (Figure 2.3, left) and all 

the layers outlined below were acquired from NB’s GeoNB website (GeoNB, n.d.). The 

DEM layer was used to generate province-wide raster layers for slope (%) and cartographic 

DTW (Figure 2.4), as described by Murphy et al. (2009). The forest soil shapefile presented 

in part by Figure 2.5, 2.6, and 2.7 provided generalized data information on topsoil and 

subsoil texture, depth-to-compaction, CF content, and degree of calcareousness by soil 



17 

 

association. Also retrieved from GeoNB were the shapefiles for private properties (Figure 

2.3, right), roads, wetlands, water bodies, crownlands, and non-forested areas (Figure 2.8). 

Non-forested areas include agricultural fields, other fields, roads and built-up areas for 

residential, institutional, and industrial use. Finally, elevation-interpolated weather station 

records for air temperature were used to produce province-wide rasters for growing degree 

days (GDDs > 5°C) and frost-free days (FFDs) at 10 m resolution (Figure 2.9). The results 

so presented at LiDAR-DEM-derived 10 m resolution correspond closely with GDDs and 

growing days (equivalent to FFDs) maps in Jong et al. (2013) and Pedlar et al. (2015), 

respectively. 

 
Figure 2.3. LiDAR-generated 1 m resolution DEM for NB (left) and property parcel PID 

map for NB (right). Source: GeoNB. 

.  
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Figure 2.4. Cartographic DTW map for NB (left) and slope map for NB (right). Both are 

derived from the 1 m DEM. Source: Forest Watershed Centre, UNB (unpublished). 

 

 
Figure 2.5. Topsoil (left) and subsoil (right) rating for potato crop suitability mapping 

across NB, by soil association polygons. Sources: GeoNB; Colpitts et al. (1995).  
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Figure 2.6. Soil depth (m, left) and soil CF (%, right) rating for potato crop suitability 

mapping across NB, by soil association polygons. Sources: GeoNB; Colpitts et al. (1995). 

 

 

 
Figure 2.7. Soil weatherability (m, left) for crop suitability mapping and overall distribution 

of glacial ablation versus basal till (right) across NB. Sources: GeoNB; Colpitts et al. 

(1995).  
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Figure 2.8. Mapping the distribution of crownlands, and of non-forested areas across NB, 

also showing water bodies and lakes (left), and roads overlaid on NB’s counties (right). 

Source: GeoNB. 

 

 
Figure 2.9. GDDs (left) and FFDs (right) across NB, generated from geospatially 

interpolating weather-station recorded air temperature data, extrapolated by elevation. 

Sources: UNB Forest Watershed Centre; Furze (2018). 
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 2.2.3. Crop Suitability Mapping by Soil Association 

By soil texture. While potato crops can be grown in differently textured soil, they 

grow best in well-drained sandy loams and other loam-containing soils (Rees et al., 2011; 

Redulla et al., 2002). Clay containing soils (i.e., sandy clay loam, clay loam, and clay) are 

not recommended because fine-textured soils are easily compacted. This compaction 

would result in poor soil aeration followed by potato rot when moist to wet. Across NB, 

soil textures vary primarily by mode of geological surface deposition. Basal tills as well as 

lacustrine to marine deposits tend to produce fine-textured soil whereas ablation till, 

riparian and glaciofluvial deposits tend to be coarse textured. Among these, ablation and 

basal tills together with their combinations of ablation till on top of basal till are prevalent. 

By CF. CF refer to gravel, cobbles, stones, and boulders from smallest < 2 

millimeters (mm) to largest. Where possible, large CF should be removed from fields to 

facilitate seedbed preparations and potato harvesting. Additionally, CF removal increases 

the soil availability for rooting, improves water filtration thereby reducing surface runoff 

and erosion, decreases heat conduction and related day-and-night soil temperature 

extremes, and minimizes tuber injuries during harvesting (Chow et al., 2007). 

By soil depth. Potatoes will not root into firm to very firm soil. Restrictions in soil-

related rooting depth are encountered on traffic compacted or naturally compacted soils, 

such as fine-textures lacustrine and marine deposits and basal tills. Moderate rooting 

restrictions occur on basal tills overlain by ablation till. Lowest restrictions are associated 

with deep ablation tills, outwash plains, and sandy deposits along riverbanks and well-

drained floodplains. 
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By calcareousness. Soil parent materials containing limestones and/or calcareous 

siltstones, sandstones, mudstones, and slates generally improve and maintain good soil 

qualities in terms of elevated pH, increased exchangeable Ca and magnesium (Mg) 

contents, reduced soil acidity, and enhanced Ca-soil aggregation, and particularly so on 

loamy and clay enriched soils. 

By soil crop suitability ratings combined. The variations of the above soil 

properties across NB were reported and mapped by Colpitts et al. (1995) by soil 

association. The information so obtained was crop-suitability coded 0.1 from poor to 1 for 

best (Table 2.1). The extent of soil calcareousness was coded 0 (absent) to 1 (limestones) 

depending on the stated mineral mix of each soil association. Table 2.2 shows this rating 

by the forest soil-association mapping units, along with parent material lithology of and 

areal extent.  
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Table 2.1. Potato crop suitability rating by topsoil texture, subsoil texture, depth-to 

compaction of soil, CF content, and calcareousness.  

Texture code: [C = coarse, C-M = coarse-medium, M-C = medium-coarse, M= medium, 

M-F = medium-fine, F = fine]; Depth-to-compaction code: [1 = <= 30 cm, 2= 31-65 cm, 3 

= 66-100 cm, 4 = > 100 cm, R = rock] Coarse fragment code: [H = high, M-H = medium-

high, M = medium, L-H = low-high, L-M = low-medium, L = low]. 

 

Table 2.2. Forest soil units with soil rating, total hectare province-wide, and primary 

lithology of parent materials. Forest soil units within the study area (Figure 2.2) are bolded. 
Forest soil units Code Soil 

Rating 

Total Ha Province-

Wide 

Primary Lithology of 

Parent Materials 

Siegas SE 1 45,698 Argillaceous 

limestones. Minor 

limestones. 
Caribou CA 1 198,213 

Undine UN 1 17,416 

Kedgwick KE 1 94,304 Calcareous siltstones, 

calcareous 

sandstones and/or 

calcareous slates. 

Carleton CR 0.75 242,574 

Thibault TH 0.75 214,897 

Muniac MU 0.75 26,441 

Saltspings SS 0.5 9,282 Grey calcareous 

mudstones and/or 

feldaspathic to lithic 

sandstones. Minor 

polymictic 

conglomerates 

Erb Settlement EB 0.5 8,904 

Salisbury SA 0.1 167,047 Red polymictic 

conglomerates, 

feldspathic to lithic 

sandstones and/or 

mudstones. Calcium 

carbonates presents 

Parry PR 0.1 155,879 

Cornhill CH 0.1 23,771 

Parleeville-

Tobique 

PT 0.1 1743,501 

Kennebecasis KN 0.1 20,616 

Topsoil 

Texture 

Subsoil 

Texture 

Depth-to-

Compaction 

Coarse 

Fragments 

Calcareousness 

C 0.6 C 0.6 1 0.1 H 0.1 Cornhill 0.1 Carleton 0.75 

C-M 0.8 C-M 0.8 1-2 0.2 M-H 0.25 Kennebecasis 0.1 Muniac 0.75 

M-C 1 M-C 1 1-2/R 0.2 M 0.5 Parleeville/ 

Tobique 

0.1 Thibault 0.75 

M 0.6 M 0.6 1-3 0.3 L-H 0.75 Parry 0.1 Caribou 1 

M-F 0.3 M-F 0.3 1-3/R 0.3 L-M 0.75 Salisbury 0.1 Siegas 1 

F 0.1 F-M 0.2 2 0.45 L 1 Tracadie 0.1 Kedgwick 1 

  F 0.1 2-3 0.6   Erb Settlement 0.5 Undine 1 

    3 0.8   Saltsprings 0.5 Others 0 

    3-4 0.9       

    3-4/R 0.9       

    4 or 2-3/ 0.9       

    4 1       
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Tracadie TD 0.1 33,923 in the cementing 

material. 

Holmesville HM 0 325,472 Metaquartzites, 

slates, metasiltstones, 

metaconglomerates 

and/or metawackes. 

Victoria VI 0 145,859 

McGee MG 0 335,809 

Glassville GE 0 193,900 

Grand Falls GF 0 71,227 

Stony Brook SB 0 466,591 Red mudstone 

(weathered). Mnor 

grey-ed lithic-

feldspathic 

sandstones, quartzose 

sandstones and/or 

polymictic 

conglomerates 

Tracy TR 0 53,942 

Harcourt HT 0 531,746 

Becaguimec BE 0 13,078 

Barrieau-

Buctouche 

BB 0 95.444 

Reece RE 0 522,674 Grey lithic-

feldspathic 

sandstones. Minor 

quartzose sandstones, 

polymictic 

conglomerates, 

quartz pebble 

conglomerates, 

and/or red 

mudstones. 

Sunbury SN 0 281,388 

Fair Isle FA 0 63,650 

Riverbank RI 0 148,791 

Tetagouche TT 0 43,445 Mafic volcanic rocks, 

gabbros and/or 

diorites 
Kingston KI 0 63,546 

Mafic Volcanic MV 0 106,595 

Tuadook TU 0 142,527 Gneiss, granites, 

alkali granites, 

granodiorites and/or 

quartz diorites 

Juniper JU 0 245,307 

Big Bald 

Mountain 

BD 0 48,283 

Popple Depot PD 0 200,003 Felsic volcanic or 

mixed igneous rocks 

and/or felsic pebble 

conglomerates 

Jacquet River JR 0 100,974 

Lomond LO 0 168,872 

Gagetown GG 0 85,311 

Long Lake LL 0 336,934 Metasedimentary 

rocks mixed with 

igneous rocks. 

[Igneous clasts 20-50 

%] 

Britt Brook BR 0 233,494 

Serpentine SP 0 41,033 

Catamaran CT 0 117,735 Igneous rocks mixed 

with 

metasedimentary 

rocks. [Sedimentary 

clasts 20-50 %]. 

Irving IR 0 121,426 

Pinder PI 0 38,828 

Rogersville RG 0 39,529 Grey-ed sandstones 

or mudstones mixed 
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with igneous rocks. 

[Igneous clasts 20-50 

%] 

Interval IN 0 45,185 Undifferentiated. 

Acadia AC 0 15,299 

Organic Soil OS 0 235,644 

Mining Debris MD 0 5,901 

 

Overall soil suitability by soil association. Assuming that the coded rate entries 

in Table 2.1 capture the soil-affected variations in potato cropping response, it is necessary 

to determine how these rates combine into a single potato crop suitability factor by soil 

association. To do this, it was decided that: 

1. To multiply the ratings for topsoil and subsoil texture, rooting depth, and CF, i.e., 

similar to calculating the likely occurrence outcome of simultaneously occurring 

random events. 

2. To add the calcareousness rating to the resulting multiplication product assuming 

that calcareousness is one third as important as the best combination of the other 

four variables. 

3. To normalize the results so obtained by dividing this result with its maximum value. 

4. To transform the normalized values so generated to obtain a linear 0.3 to 1 

suitability progression across the range of soil associations. This was accomplished 

through 0.33 exponentiation. 

The result of doing so generated Eq. 2.1: 

 

 

Eq. 2.1. 
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Table 2.3. Potato crop suitability rating by soil association across NB. 

Potato Crop Suitability Rating by Soil Association 
*Not adjusted by drainage, growing-degree days, frost-free days, or slope 

Glassville 0.30 Gagetown 0.62 Holmesville 0.79 

Stony Brook 0.33 Saltsprings 0.63 Catamaran 0.79 

Mafic Volcanic 0.34 Kingston 0.64 Grand Falls 0.79 

Tetagouche 0.34 Parleeville Tobique 0.65 Juniper 0.79 

Big Bald 

Mountain 

0.35 Kennebecasis 0.65 Kedgwick 0.80 

Harcourt 0.38 McGee 0.66 Jacquet River 0.81 

Fair Isle 0.39 Irving 0.66 Muniac 0.81 

Pinder 0.43 Erb Settlement 0.68 Parry 0.82 

Serpentine 0.44 Barrieau-

Buctouche 

0.70 Caribou 0.83 

Acadia 0.44 Riverbank 0.70 Thibault 0.83 

Cornhill 0.45 Victoria 0.71 Long Lake 0.84 

Lomond 0.46 Popple Depot 0.72 Carleton 0.86 

Reece 0.50 Salisbury 0.72 Tracy 0.86 

Tracadie 0.52 Tuadook 0.74 Becaquimec 0.92 

Sunbury 0.54 Siegas 0.77 Britt Brook 0.92 

Rogersville 0.61 Undine 0.78 Interval 1.00 

Soil suitability mapping. Applying the soil suitability rating in Table 2.2 province-

wide required updating of GeoNB’s catalogued forest soils shapefile to conform to 

GeoNB’s waterbodies and wetland layers. This was done in ArcMap 10.7.1 using 

procedures dealing with: 

1. Eliminating all waterbodies and wetlands features in the forest soil shapefile for 

NB. 

2. Converting the resulting shapefile into a 5 m resolution raster with “no data” pixels 

at the forest-soil registered waterbodies and wetlands locations. 

3. Systematically extending existing soil-association identified pixels into all their 

adjacent “no data” spaces. 
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4. Once completed, replacing the resulting pixels with GeoNB’s identified 

waterbodies or wetlands pixels where needed, done through conditional raster 

calculations. 

5. Converting the resulting raster into the updated soil association shapefile, followed 

by feature outline smoothing to reduce and/or eliminate their pixelated appearance. 

6. Applying Eq. 2.1 using the shapefile field calculator to generate the province-wide 

crop suitability layer by soil association, with all of GeoNB’s waterbodies and 

wetlands features in place, as shown in Figure 2.8. 

2.2.4. Crop Suitability Mapping by Soil Drainage and Slope 

The crop suitability mapping parts by DTW and slope was done using the 1 m 

resolution coverage for elevation across NB. For this, the slope was derived using the Slope 

tool in ArcMap 10.7.1 as steepest percent rise over distance among the eight-cardinal 

directions adjacent to each DEM pixel. The DTW layer as shown in Figure 2.4 was derived 

using the ArcMap 10.7.1 Cost Distance tool, with the delineated flow channel network 

marking DTW = 0 reference cells, and the slope percent raster used as the cost raster. The 

resulting DTW and slope rasters are shown in Figure 2.4. In detail, DTW refers to the 

distance between the soil surface and the water table associated with the nearest waterbody 

and the flow channel locations, as affected by slope. The flow channels were developed 

using the D8 algorithm that derives the r flow accumulation and flow network rasters from 

the depression filled DEM according to the pixel-determined flow directions. The resulting 

flow channels were subsequently classified to have no data for any pixels with > 4 ha 

upslope flow accumulation. This threshold generally equates to mapping the extent of 

permanent streams under open end-of-summer field conditions. This being so, end-of-
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summer conditions for DTW < 0.1m, 0.1 m < DTW < 0.25 m, 0.25 m < DTW < 0.5 m, 0.5 

m < 1m, 1 m < DTW <= 10 m, DTW > 20 m generally correspond to: very poor, poor, 

imperfect, moderately well, well and excessive soil drainage, respectively. 

The 0 to 1 crop suitability rating function for DTW was estimated by setting: 

RDTW = a [1-exp(-b DTW)]c exp(-d DTW)]                          Eq. 2.2 

with a = 1.065, b = 3.5, d = 0.03, c = 4.8 

As illustrated in Figure 2.4 (left), RDTW starts from 0 when DTW = 0 (too wet) 

reaches a maximum at 1.5 m (sufficiently moist most of the time), and trails downward 

from there to about 0.5 m as DTW approached 20 m and beyond (becoming drier with 

increasing DTW towards the upper ridges). 

The 0 to 1 crop suitability rating function for slope (%) was estimated by setting: 

Rslope = 1 / {1 + exp [ - 3 (slope – 10)]}     Eq. 2.3 

This slope rating equation uses slope = 10 % as the DEM-derived slope threshold 

for ensuring that if slope < 10 %, then: 

1. Field operations pertaining to seedbed preparation, seeding, harvesting, etc. remain 

safe. 

2. Soil erosion remains minimal. This threshold is modified by approaching slope = 

10 % gradually from 8 % upwards, and leaving it gradually towards 12 % (Figure 

2.4, right). 
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Figure 2.10. Potato crop rating specific to variations in DEM-derived DTW and slope %. 

The overall soil-based crop suitability rating accommodates the DEM-captured 

DTW and slope variations by resetting Eq. 2.1 to Eq. 2.4. (i.e., with RDTW and RSlope as 

additional multiplication factors. 

 

2.2.5. Crop Suitability Mapping by Growing Degree Days and Frost-Free Days 

In general, potatoes require about nine weeks (63 days) for full canopy 

development, and 18 weeks (126 days) to initiate senescence and thereby completing tuber 

growth (Figure 2.11). Late frost in spring affects foliage development. Early frost in fall 

affects tuber quality by tissue damaging. For example, early intermittent freezing leads to 

black external spots. FFDs generally exceed 100 days across NB except for the elevated 

areas in the northwest (Figure 2.9). This implies that the number of growing season days 

for potatoes is sufficiently long province-wide, with only minor FFD rating adjustments 

needed for the high elevation areas in the northwest. 

Eq. 2.4. 
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Figure 2.11. Percent extent of potato shoot, foliage, and tuber development by days after 

emergence. Source: Rosen & Bierman (2008). 

 

In terms of GDDs, potatoes require about 1,000 and 1,500 GDDs from emergence 

to tuber initiation and harvesting (Figure 2.12). Across NB and according to Figure 2.9, 

GDDs range from 1400 to 2100, therefore potato cropping is essentially not climate 

restricted across NB except for the high elevation location in the northwest. Where 

conditions are suitable, GDDs > 1500 lead to additional tuber growth, particular for Russet 

potatoes (Figure 2.12). 
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Figure 2.12. Russet potato tuber numbers and length in relation to the number of stems and 

increasing GDDs > 5 °C. Source: Goeser et al. (2012). 

 

Accounting for increasing FFDs and GDDs benefits on potato suitability rating 

modifies Eq. 2.4 to Eq. 2.5: 

Rsoil & Climate = Rsoil x RGDD x RFFD       Eq. 2.5 

with 

RFFD = 1 / [1 + exp (- aFFD (FFD – bFFD)]     Eq. 2.6 

and 

RGDD (tuber length) = 1/[1+exp(-aGDD (GDD-bGDD)]               Eq. 2.7 

Varying from 0 to 1 with increasing GDD and FFD values. Tentative, aGDD, bGDD, 

aFFD, and bFFD are set at 0.006, 1250, 0.1, and 100, respectively, with the result shown 

in Figure 2.13. 
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Figure 2.13. Increasing the rating for FFD and GDD as generated with Eq. 2.5, 2.6, and 2.7 

marks the time available for potato cropping number of days within and across regions 

depending on local climate conditions. 

2.2.6. Crop Suitability Mapping by Socioeconomic Factors 

This thesis does not rate potato crop suitability within the context of socioeconomic 

realities such as distance to potato processing facilities and market but evaluates the 

outcome of these realities by examining the extent of farm- and woodland-based property 

taxation across NB. To this effect, farm and woodland tax assessment values - as listed for 

each property - were compared with the property-corresponding values for: 

1. Mean crop suitability ratings. 

2. Area (ha). 

3. Footprint area of buildings (m2). 

4. Binary variable coded 0 for farm fields properties only and coded 1 for farm and 

wood lands property combinations. 

The data layers used to do this examination refer to: 

1. The PID layer (Figure 2.3). 

2. The soil, slope, DTW, and climate assessed potato crop suitability layers, as 

presented in Chapter 3. 
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3. GeoNB’s building footprint layer. 

The results for this socio-economic evaluation are described in Chapter 4. 

2.3. Results 

Figure 2.3 shows the potato crop suitability mapping results for the whole AOI. In 

Chapter 3, the results so obtained per PID will be discussed across the study area as a whole 

and per three subsections (Woodstock area, Hartland to Florenceville area, and the northern 

section above Florenceville). 

 

Figure 2.14 LiDAR-based potato crop suitability mapping results within the AOI (black 

boundary). Basemap source: GeoNB. 

2.4. Discussion and Conclusion 

The approach taken above differs from the literature on potato crop suitability 

mapping, as follows: 
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1. The approach makes use of high-resolution airborne 1 m LiDAR data. The 

preceding articles on potato suitability listed in Chapter 1 do this at significantly 

coarser resolution [Trigoso et al. (2017), Asfaw et al. (2017), Daccache et al. 

(2012), Yusianto et al. (2012), Wang et al. (2021), and Zhao et al. (2018)]. The 

province-wide GDD and FFD data layers as described above are elevation adjusted 

at LiDAR-DEM generated 10 m resolution. In contrast, Internet available GDD and 

FFD data layers are based on much coarser resolutions (e,g., Gridded 5 kilometre 

(km); National Centers for Environmental Information, 2022). 

2. While GDDs and FFDs tend to decrease with increasingly northern latitudes, it 

appears that these variations- according to Figure 2.9 - remain within the feasible 

GDD and FFD ranges for potato cropping across NB, except on the high northwest 

elevations. 

3. The above potato crop suitability analysis explicitly accounts for five soil 

characteristics that effect potato cropping fundamentally, i.e., subsoil and topsoil 

texture, CF content, depth-to-compaction of soil, and calcareousness. The 

corresponding literature-based soil selection listed in Table 1.1 range from eclectic 

to selective. For example, Trigoso et al. (2017) accounted for soil pH, OM, P, K, 

cation exchange capacity (CEC), and EC. Asfaw et al. (2017) used generalized soil 

type information from Selassie et al. (2014) and Kollias & Kalivas (1999) about 

pH, OM, total nitrogen (N), and available P in Ethiopian soils while Kollias & 

Kalivas (1999) provides soil information about slope, drainage, texture, carbonates, 

and erosion risk in Greek soils. Daccache et al. (2012) only accounted for soil 
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texture, OM, and soil structure. For establishing the potato suitability context over 

wide regions, Yusianto et al. (2020) dealt with soil texture only. 

4. Socioeconomic factors can be included into the overall potato suitability rating 

scheme through location-specific add-on considerations. For NB, this would 

amount to assessing (i) the transportation costs from fields and farms to nearby 

processing facilities, (ii) the costs needed for upgrading existing fields or adjacent 

forested areas to enable potato cropping, and (iii) the costs required to establish new 

farms and processing facilities. 
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CHAPTER 3: MAPPING RESULTS, QUALITATIVE 

EVALUATIONS 

3.1. Introduction 

This chapter evaluates and presents some of the potato crop suitability mapping 

results generated by the workflow processes detailed in Chapter 2 across the area as 

depicted in Figure 2.2 and detailed by soil association in Table 2.2. This was done for three 

areas: around Woodstock, Edmundston and Grand Falls (Figure 3.1), with property-

specific examples for each area viewed in terms of hill-shaded DEM and recent satellite 

images with and without the resulting potato crop suitability layer overlaid. Also overlaid 

in these presentations are (i) the DEM-derived flow channels with > 4 ha upslope flow-

accumulation areas and (ii) the GeoNB-catalogued wetlands, water bodies, roads, and 

PIDs. Subsequently, the potato crop suitability mapping examples so generated are 

compared with the corresponding clipped portions of the coarser-grained province-wide 

crop suitability map as provided by NB’s DAAF.  

The evaluation of the individual property pieces across the study area refers to 

separating each property by its agricultural field and forest components. This is done to 

determine the total areas and the average crop suitability rating for these two components. 

The hypothesis is that the agricultural field components have higher suitability ratings than 

the forest components. 
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Figure 3.1. NB topographic map overlaid on the potato crop suitability (%) map within the 

study area within the AOI (black boundaries), with the locations of the field-based map 

examples for the Woodstock, Florenceville and northern NB sectors overlaid. Basemap 

source: GeoNB. 

3.2. Methods 

3.2.1. Qualitative Assessments 

LiDAR-based potato crop suitability mapping was done according to workflow and 

procedures described in Chapter 2. Province-wide shapefiles referring to properties as well 
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as waterbodies, wetlands, and roads were obtained through GeoNB. These files were 

clipped to produce examples of property-based crop suitability examples by forested and 

agricultural field components (e.g., Figure 3.2) for the Woodstock (4 examples), 

Florenceville (4 examples) and northern NB (5 examples) areas. These examples contained 

the mask-extracted crop suitability raster overlaid on the (i) hill-shaded DEM and (ii) ESRI 

satellite images or georeferenced Google Earth images. This procedure was repeated to 

enable example-specific comparisons with the Chapter 2-generated and the coarser-grained 

on-line provincial potato site suitability maps (Government of New Brunswick, 2018).  

3.2.2. Quantitative Assessment 

Basic statistics of the mean potato crop suitability (%), numbers of PANs, and total 

area of PANs (ha) by land class (farm, woodlot, and farm and wood combinations lands) 

and split by sections (Woodstock area, Hartland-Florenceville area, and Northwestern NB 

area) were generated to compare potato crop suitability across the AOI and by current land 

use. PANs were used instead of PIDs since it is possible to identify which properties 

contains both agricultural and forested components as opposed to PIDs. 
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Figure 3.2. Close-up of an area within the AOI. World imagery with GeoNB-retrieved 

property outlines (”PIDs”, white borders) and their agricultural field components (red 

borders) overlaid. Basemap source: GeoNB. 

3.3. Results 

3.3.1. Qualitative Assessment: Woodstock Area 

Figure 3.3 shows the four locations of the crop suitability examples for the 

Woodstock area, overlaid on the forest soil association unit within this area, with close-ups 

shown in Figures 3.4, 3.5, 3.6, and 3.7. 
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Figure 3.3. Locations of the crop suitability examples (PIDs 10283562, 10048296, 

10270999, 10175354) within the Woodstock area, overlaid on the forest soil units for the 

area and roads (yellow lines). Source: Colpitts et al. (1995). 
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In detail, the PID 10048296 entry (84.50 ha) is located in Wakefield Parish 

(46°13'12.0"N 67°38'14.3"W). The underlying soil for this PID refers to CR, which is 

derived from calcareous siltstones, sandstones and/or slates. Figure 3.4 indicates poor to 

moderate potato crop suitability along the streams and associated wet areas with poor soil 

drainage. The steeper slopes are also categorized by poor crop suitability. Otherwise, most 

of the PID is deemed to be suitable for potato cropping, as is already the case for most if 

its eastern field portion.   

 
Figure 3.4. Images of PID 10048296 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also showing streams (4 ha), PIDs, 

roads, waterbodies, and wetland. Forest soil unit: CR. Basemap source: GeoNB. Potato 

crop suitability varies from 0 to 100 %, coloured from red through yellow to green, 

respectively.  

 

Figure 3.5 shows close-ups of PIDs 10270999 (33.58 and 29.82 ha, north to south), 

located in Richmond Parish (46°11'14.8"N 67°44'30.8"W). The field also occur on CR soil. 

The satellite images indicate that the fields are highly suitable for potato cropping. 

09/05/2021 
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Exceptions occur along the mapped > 4 ha flow channels that run cross the fields. Three of 

these channels (southern PID, bottom left and middle, northern PID white line) run along 

image-detectable ditches. 

 
 

Figure 3.5. Images of PID 10270999 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also showing streams (4 ha), PIDs, 

roads, waterbodies, and wetland. Forest soil unit: CR. Basemap source: GeoNB. Potato 

crop suitability varies from 0 to 100 %, coloured from red through yellow to green, 

respectively. 

28/04/2016 08/07/2019 
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Figure 3.6 shows close-ups of PID 10175354 (61.14 ha), located in Richmond 

Parish (46°10'30.4"N 67°43'38.9"W). This PID occurs on calcareous CR and TH soils. Due 

to the steep slope conditions this forested PID is not suitable for potato cropping.  

 
Figure 3.6. Images of PID 10175354 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also showing streams (4 ha), PIDs, 

roads, waterbodies, and wetland. Forest soil units: CR and TH. Basemap source: GeoNB. 

Potato crop suitability varies from 0 to 100 %, coloured from red through yellow to green, 

respectively. 

Figure 3.7 shows close-ups of PID 10283562 (113.66), located in Wilmot Parish 

(46°17'53.0"N 67°38'53.2"W). This PID occurs on calcareous CA and SE soils. Potato crop 

suitability varies across this PID from unsuitable for the middle part on the flat area along 

08/07/2019 



46 

 

the main flow channel from west to east at near to suitable for the norther and southern 

parts. According to the historical Google Earth images, the northern part was forest cleared 

from west to east between 2017 and 2019, but with the forest portions within wet areas of 

this section remaining intact. 

 
 

Figure 3.7. Images of PID 10283562 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also showing streams (4 ha), PIDs, 

roads, waterbodies, and wetland. Forest soil units: CA and SE. Basemap source: GeoNB. 

Potato crop suitability varies from 0 to 100 %, coloured from red through yellow to green, 

respectively. 

 

01/10/2004 
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3.3.2. Qualitative Assessment: Hartland-Florenceville Area 

Figure 3.8 shows the four locations of the crop suitability examples for the 

Hartland-Florenceville area, overlaid on the forest soil association units within this area, 

with close-ups shown in Figures 3.9, 310, 3.11, and 3.17. 

 
 

Figure 3.8. Locations of the crop suitability examples within the Hartland-Florenceville 

area, overlaid on the forest soil units for the area. Source: Colpitts et al. (1995). Yellow 

lines: roads. 
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In detail, Figure 3.9 shows a close-up collage of PID 10227098 (87.60 ha), located 

east of the Harland High School (46°18'30.11"N, 67°30'29.46"W). The PID occurs on CR 

soil. Along the less hummocky and less steeper portions, this parcel has been used for 

agricultural production since settlement, with the steeper and not suitable portions 

remaining forested. More details about this PID are presented in Chapter 6. 

 
Figure 3.9 Images of PID 10227098 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil unit: CR. 

Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

Figure 3.10 shows a close-up collage of PID 10263366 (20 ha), located in 

Centreville (46°26'20.89"N, 67°42'43.14"W). The PID is on CA soil. The hillshaded DEM 

19/06/2016 
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reveals a smooth to hummock terrain which is mostly mapped to be suitable for potato 

cropping.  

 
Figure 3.10. Images of PID 10263366 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil unit: CA. 

Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

The flow channels along the western part of this PID are mapped to have low crop 

suitability. Looking at the historical Google Earth images reveals a darkening of the surface 

colour towards this channel, thereby trending towards wetter and lower soil drainage 

conditions. Historically poor soil drainage along this channel may have been addressed by 

09/05/2021 
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installing subsoil drainage tiles. Along the northeastern portion, the PID remains in part 

forested. The portion of the forested area south of the PID is- for the most part - mapped to 

be potato-crop suitable. 

Figure 3.11 shows a close-up collage of PID 10151512 (13.38 ha), located in 

Wilmot Parish (46°22'54.8"N 67°41'18.7"W). The PID is located on CA soil. The 

southwestern forested part of the field is not suitable for potatoes due to hilly topography. 

In addition, there are parts mapped to be unsuitable near flow-channel location conditions. 

Looking at the historical images reveals that cropping took place across the non-forested 

portion of the field, but surface colouration within the May 2021 Google Earth image 

changed along the hill-shade revealed lower lying portions of this field.  

 Figure 3.12 shows close-up collage of PID 10201267 (36.03 ha), located in 

Brighton Parish (46°25'30.0"N 67°23'12.7"W) on TH soil. Overall, this field is suitable for 

potato crops, expected for the small and steeply sloping forested area at its southern 

boundary and the small poorly-drained area around the stream located at the northern 

boundary. The flatter areas around this PID are also mapped to be suitable for potato 

cropping. 
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Figure 3.11. Images of PID 10151512 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil unit: CA. 

Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

 

 

09/05/2021 
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Figure 3.12. Images of PID 10201267 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil unit: TH. 

Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

3.3.3. Qualitative Assessment: Northwestern NB 

Figure 3.13 shows the northwestern study are by soil association, with roads, 

wetlands and waterbodies overlaid, followed by the close-up collage examples in Figures 

3.14 to 3.19.  
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Figure 3.13. Locations of the crop suitability examples within the Grand Falls area, 

overlaid on the forest soil units for the area. Source: Colpitts et al. (1995). Yellow lines: 

roads. 
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Figure 3.14 presents the close-ups for PID 65084410 (58.50 ha), located in Grand 

Falls Parish (46°51'18.8"N 67°44'47.3"W) on SE and CA soils. The smooth field section 

on this PID contains a 60 m drainage pattern obliquely aligned from south to north and 

leading into the major flow channels along the PID perimeter. This pattern was likely 

installed to overcome the slow drainage nature of the poorly draining and compacted basal 

till that underlies SE soil. Overall, the drained portions of the field are mapped to be well 

suited for potato production. In contrast, the field portions that are steep and are mapped to 

be poorly-drained have remained forested. 

 

 
 

Figure 3.14. Images of PID 65084410 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil units: SE and 

CA. Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured 

from red through yellow to green, respectively. 
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Figure 3.15 shows close-up collage of PID 65085268 (34.74 ha), located in Grand 

Falls Parish (46°54'07.2"N 67°44'38.3"W). The field also occurs on SE and CA soils and 

contains a south-north curved 60 m ditch drainage pattern along its western section. 

Cropping pattern within this PID changed between 2011 and 2019 by dividing the PID into 

smaller management units. The forested area is suitable for potato growth, except for the 

steep slope terrain at the southeastern boundary. The eastern portion along the highway 

and to the south of this PID, while mapped crop suitable, has remained forested. 

 
Figure 3.15. Images of PID 65085268 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil units: CA and 

SE. Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

 

Figure 3.16 shows the close-up collage for PID 35106236 (39.82 ha), located in 

Saint-André Parish (47°06'58.6"N 67°47'54.2"W). The PID is mapped to occur on SE soil 

but appears to be well-drained for potato cropping except along the east-west middle 

16/05/2010 14/05/2021 
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portion and the northern section which is in part still forested. More details about this PID 

are presented in Chapter 5. 

 

 
Figure 3.16. Images of PID 135106236 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil unit: SE. 

Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

 



57 

 

Figure 3.17 shows the close-up collage for PID 35337989 (44.37 ha), located in 

Edmundston (47°19'39.4"N 68°24'39.3"W). The PID occurs on non-calcareous well-

draining MG and HM soils, both derived from a mix of metaquartzites, slates, 

metasiltstones, metaconglomerates and/or metawackes. The terrain is hummocky along the 

northern part, and gentler along the southern part. Except for the strongly hummocky areas, 

the field portions are mapped to be suitable for potato cropping. The area along the southern 

perimeter of this PID has remained forested. Examining the historical Google Earth images 

reveals frequent management zone changes within the field portions of this PID.  

 
Figure 3.17. Images of PID 35337989 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil units: HM and 

MG. Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured 

from red through yellow to green, respectively. 

08/07/2019 05/08/2006 

11/10/2020 
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Figure 3.18 shows close-ups of PID 35204858 (41.61 ha), located in Sainte-Anne 

Parish (47°20'04.0"N 67°53'55.8"W) and on well-draining and in part steeply sloping HM 

soil. Overall, this PID remains subject to forest management and is generally unsuitable 

for potato cropping. 

 
Figure 3.18. Images of PID 35204858 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil unit: HM. 

Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

21/06/2010 
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Figure 3.19 shows close-ups of PID 50012996 (41.00 ha), located in Saint-Quentin 

Parish (47°32'35.8"N 67°27'16.5"W) on calcareous TH soil. Potato cropping is mapped to 

be suitable except along the flow channels within this PID. Examining the July 2019 

Google Earth image reveals (i) a greener surface colouring along these channels, and (ii) 

that the forested area above the northern PID perimeter and flow channels has been cleared. 

 
Figure 3.19. Images of PID 50012996 close-ups. From left to right, and from up to down: 

hillshaded DEM, hillshaded DEM with potato crop suitability (%) overlaid (layer 

transparency set to 50 %), satellite imagery, satellite imagery with potato crop suitability 

overlaid (layer transparency set to 50 %). All images also show streams with > 4 ha upslope 

flow accumulation areas, PIDs, roads, waterbodies, and wetland. Forest soil unit: TH. 

Basemap source: GeoNB. Potato crop suitability varies from 0 to 100 %, coloured from 

red through yellow to green, respectively. 

3.3.4. Qualitative Assessment: LiDAR-DEM versus Coarse-Grained Crop 

Suitability Mapping  

The LiDAR-DEM versus the province-wide coarse-grained suitability maps for 

potato cropping are presented in Figures 3.20. 3.21 and 3.22 and are all based on the above 

collage illustrations for the Woodstock, Hartland-Florenceville and northern NB areas. The 

differences in suitability mapping across these examples are mainly due to: 

27/07/2019 
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1. using the original non-LiDAR DEM coverage across NB for flow channels and 

cartographic depth-to-water mapping; 

2. not using provincial soil maps for differentiating crop suitability by varying soil 

conditions; 

3. blocking out wetland areas and areas deemed too steep for potato cropping.  

For the Woodstock area, the provincial productivity map in comparison with the LiDAR-

derived map: 

1. rated poorly-drained areas in the southern part of PID 10283562 suitable for potato 

cropping; 

2. rated more areas in PID 10048296 and PID 10270999 unsuitable, by not accounting 

for local variations in soil type and the presence of flow channels with > 4 ha 

upslope flow accumulation areas; 

3. provides no rating for PID 10175354.  

For the Hartland-Florenceville area, the provincial productivity map in comparison 

with the LiDAR-derived map produced similar although less detailed results for PIDs 

10263366, 1020126, 10151512, and 1022709. However, actual locations and extent for 

crop suitability differ.  

 



61 

 

 
Figure 3.20. Comparison of potato crop suitability rating from LiDAR-based results (left) 

and provincial results (right) for PIDs 10283562, 10048296, 10270999, and 10175354. 
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Figure 3.21. Comparison of potato crop suitability rating from LiDAR-based results (left) 

and provincial results (right) for PIDs 10263366, 10201267, 10151512, 10227098. 
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For the northern NB area, the provincial productivity map in comparison with the 

LiDAR-derived map showed more areas for PIDs 35337989 and 35204858 to be 

unsuitable, while the suitability results for PID 50012996.  

 
Figure 3.22. Comparison of potato crop suitability rating from LiDAR-based results (left) 

and provincial results (right) for PIDs 35337989, 50012996, and 35204858. 
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For the remaining examples for Northern NB area, the provincial productivity map 

again mapped larger areas in PIDs 35106236, 65085268 and PID 65084410 to be 

unsuitable for potato cropping.  

 
Figure 3.23. Comparison of potato crop suitability rating from LiDAR-based results (left) 

and provincial results (right) for PIDs 35106236, 65085268, and 65084410. 
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In summary, the qualitative crop suitability rating results including the comparisons 

with the NB rating map for potato cropping as portrayed above suggest the following:  

1. The LiDAR generated crop suitability map is rated 0-100 %. In contrast, the 

provincial potato crop suitability map is rated using three categories: limited 

potential, modest potential, and good (best) potential. However, the modest 

potential rating is limited to the perimeter of the other limited and best classes and 

is therefore not able to locate transitional areas from poor to best. 

2. The 0 to 100 % crop suitability display allows for field-by-field inspections to 

ascertain within-field limitations regarding soil drainage and steep slopes.  

3. Areas where slopes are deemed too steep for agricultural activities (i.e., > 10 %) 

are left out of the provincial potato crop suitability mapping, as opposed to LiDAR-

derived results, showing where these areas grading become unsuitable, or good in 

part be used by way of, e.g., contour terracing.  

4. This project’s results identify greater areas suitable for potato production than the 

provincial mapping results. This is mainly due to the 1 m elevation resolution, 

which deems many small areas between flow channels and with > 10 % slopes to 

be crop suitable.  

5. For the most part, fields - as revealed above through historical surface images - are 

aligned with LiDAR-generated crop suitability extents. Exceptions occur in fields 

where areas adjacent to LiDAR-generated flow channels parts are mapped to be 

poorly-drained and are therefore rated unsuitable but appear to be well-drained. In 

part, these channels are present, but the water would have been diverted either along 

ditches or through underground drainage tiles (Milburn & Gartley, 1987). Still, in 
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many cases, low-lying areas in fields along DEM-generated flow channels with > 

4 ha upslope flow accumulation appears to be darker, lighter or greener.  

3.3.5. Quantitative Assessment 

The forest and agricultural segments across the study area and across its 

Woodstock, Hartland to Florenceville and the northern sections were analyzed in terms of 

(i) property numbers, (ii) combined farm, farm & forest and forest areas, and (iii) mean 

potato crop suitability ratings. The results so obtained are listed in Table 3.1.  

Table 3.1. Statistics (mean and/or sum) of PANs area (ha), soil quality rating (%), 

assessment values ($), and PANs; split by section and land class. 

 Land Class Woodstock 

area 

Hartland-

Florenceville 

area 

Northwestern 

NB 

Number of 

PANs 

Farm 633 889 1000 

Forest 1402 1050 2660 

Farm & Forest 251 374 514 

Total 2,286 2,313 4174 

Combined 

areas of PANs 

(ha) 

Farm 29,071 37,904 33,021 

Forest 109,688 65,496 334,821 

Farm & Forest 11,394 17,610 18,461 

Total 150,153 121,010 386,302 

Mean potato 

crop 

suitability 

rating (%) 

Farm 56.04 52.72 51.10 

Forest 47.72 36.85 32.75 

Farm & Forest 54.42 50.50 43.08 

Average 52.73 46.69 42.31 

Across the study area, the forested areas exceed the agricultural land portions by a 

factor of 8, i.e., 967,775 ha vs. 100,248 ha). The average potato crop suitability rating of 

forested land amounted to 34.4 %. This suggests that field and areas suited for potato 

cropping can be expanded but perhaps not to this extent because some of the areas between 

flow channels and steep slopes would be too narrow and/or too small in support of self-

financing cropping operations. The average potato crop suitability rating of farm field PIDs 
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amounts to 51.1 % across the study area. This percentage would be higher upon excluding 

all within-field areas that either too wet or too steep. From the southern to the northern 

study areas, the within-field and forest suitability ratings decrease. This decrease can be 

attributed to the southern to northern increase in per-area frequencies pertaining to steeper 

slopes.  

3.5. Conclusion 

 To conclude, the existing provincial potato-crop suitability map does not account 

for cross-province soil association variations, and local slope and soil drainage conditions 

remain poorly resolved (Government of New Brunswick, 2018). Using the NB-wide 

LiDAR generated DEM in connection with the waterbodies and wetlands adjusted NB 

Forest Soil Association map overcomes this issue such that areas now rated suitable for 

potato cropping conform to image-captured field extent. Overall, the averaged potato crop 

suitability ratings for agricultural fields and forested areas amount to 51.1 % and 34.4 % 

across the study area, respectively. This suggests where potato and related crops can be 

expanded into forest areas but only where rated and found to be suitable. To do so, 

however, requires detailed on-site considerations including conducting on-site inspections 

and surveys pertaining to actual soil property determinations. In this regard, the above crop 

suitability rating scheme – by procedure influenced by the generalized soil association 

attributes listed in Tables 2.1 and 2.2 – does not yet represent actual within-field soil 

attribute distributions (see Chapters 5 and 6). To that end, digital soil mapping needs to be 

developed further to reliably account for within-field soil property variations as affected 

by, e.g., drainage and topography. In principle, conversion of forested lands into 

agricultural lands needs to be done carefully without degrading physical, chemical and 
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biological soil properties (Government of New Brunswick, n.d.) In this, maintaining if not 

enhancing existing soil organic matter pools is vital, especially for repeated potato cropping 

(Tolimir et al., 2020).  
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CHAPTER 4: PARCEL ACCOUNT NUMBER GENERATED 

RESULTS 

4.1. Introduction 

In NB, farm properties (≥ five ha) are assessed at market value. In contrast, freehold 

timberlands (≥ 10 ha) and farm woodlots (≥ 10 ha) are assessed at one hundred dollar and 

one dollar, respectively (Government of New Brunswick, 2005; Cook, 1992). A map of 

individual land parcels can be obtained through GeoNB, along with information on land 

use description, sale value, assessment value, tax levy, and area (PAN data file; GeoNB, 

n.d.). This information is updated annually and is available for public use. The objective of 

this chapter is to evaluate the extent to which the assessed market values of farmland PANs 

correspond with the 1 m crop suitability rating results for the study area depicted in Figure 

4.1. The hypothesis is that soil quality in terms of potato cropping implicitly contributes to 

the NB tax assessment of farm as well as farm / forested properties. 

4.2. Methods 

4.2.1. Study Area and Data 

The area in Carleton County (Bath to Woodstock), outlined red in Figure 4.1, 

represents the Proof-of-Concept area (POC; 142,839 ha). The area along the Upper Saint-

John River Valley, outlined yellow in Figure 4.1, represents the entire Area of Interest 

(AOI; 971,665 ha). 
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Figure 4.1. Evaluating the extent of soil-based potato crop rating on property tax 

assessment: POC (red outline), a portion of Carleton County; AOI (yellow outline), the 

Upper Saint John River Valley in NB. 

Shown in Figure 4.2 are POC close-ups of: 

1. The potato crop suitability map derived in Chapter 3, based on the procedures 

described in Chapter 2 (left). 

2. The building footprint (building areas (m2) per PID) obtained from GeoNB 

(middle). 
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3. Farmlands, woodlands, and farm and wood land combinations PANs obtained from 

GeoNB (right). 

 
Figure 4.2. Maps of layers used to investigate the extent to which farmlands reflect soil 

quality with respect to potato production. a) potato crop suitability rating map (%), b) 

building footprint, and c) farmlands, woodlands, and farm and wood land combinations 

PANs. The layers are “zoomed in” the POC area. Basemap source: GeoNB. 

The potato crop suitability rating map ranges from 0 to 100 %, with 0-33 %, 33-66 

%, and 66-100 % considered poor, fair, and good, respectively. The PAN layer provides 

the data for tax assessment purposes and the PID layer (parcel identifier) is used for 

mapping purposes. A property can be assigned more than one PID if it contains multiple 

buildings. Altogether, the PAN layer also contains information on: 

1. Location (physical address). 

2. Description of property. 
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3. Tax assessment code and tax assessment description. 

4. Assessment year. 

5. Assessment value ($). 

6. Transaction date. 

7. Sale value ($). 

8. Tax levy ($). 

9. Area of property (m2). 

For the purpose of this research, only property assessment values, property areas, 

property footprint areas, and property type (i.e., farm, farm/woodland, forest are used for 

tax assessment analysis and geoprocessing. For this analysis, the building footprint layer 

provides details on all buildings that were present during the time of LiDAR data collection 

(2015 and 2018), as follows: 

1. Date of creation. 

2. Minimum and maximum elevation (m).poc 

3. Building ID. 

4. Building (polygon) area (m2). 

5. For the purpose of this research, building area per PAN is chosen to be an additional 

variable for tax assessment analysis and geoprocessing. 

4.2.2. Geoprocessing 

Geoprocessing was conducted in ArcMap 10.7.1 with the following workflow: 

1. The Clip tool was used to limit the PANs layer to the POC and AOI areas. 
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2. Farmlands smaller than five ha were removed from the selection using the Select 

by Attribute function and PANs intersecting the boundary of the POC and AOI 

areas were removed using the Selection by Locations function. 

3. PANs with buildings were identified using the Selection by Location function. The 

Intersect tool was used to create a feature class of these buildings and output was 

joined to the PANs layer via shared field. 

4. The Select by Attribute function was used to only select PANs pertaining to 

farmlands, woodlands, and farm/woods using the following query sequence: 

Descript LIKE '*Farm*' OR  

Descript LIKE '*Agricole*' OR  

Descript LIKE '*AGRICOLE*' OR  

Descript LIKE '*FARM*' OR  

Descript LIKE '*Ferme*' OR  

Descript LIKE '*TIMBER*' OR  

Descript LIKE '*Timber*' OR  

Descript LIKE '*wood*' OR  

Descript LIKE '*WOOD*' OR  

Descript LIKE '*TIMBELAND*' OR  

Descript LIKE '*TIMERLAND*' OR  

Descript LIKE '*TIMBLD*' OR  

Descript LIKE '*Boisée*' OR  

Descript LIKE '*boisee*' OR  

Descript LIKE '*BOISE*' OR  

Descript LIKE '*boisée*' OR  

Descript LIKE '*BOISÉES*' OR  

Descript LIKE '*BOISÉE*' OR  

Descript LIKE '*Agri.*' OR  

Descript LIKE '*Boisee*' OR  
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Descript LIKE '*FERME*' OR  

Descript LIKE '*Woodland*' OR  

Descript LIKE '*Agricole*' OR  

Descript LIKE '*boisé*' OR  

Descript LIKE '*Boisé*' OR  

Descript LIKE '*Woodlot*' OR  

Descript LIKE '*AGRCIOLE*' OR  

Descript LIKE '*ABRICOLES*' OR  

Descript LIKE '*agri*' 

5. The Zonal Statistics as Table tool was used the derived the mean potato crop 

suitability rating for each PAN. The table output so generated was joined to the 

clipped PANs layer via shared attribute. 

6. The tabular data was exported using the Excel to Table tool. 

4.2.3. Statistical Analyses 

The statistical evaluations included summarizing the PAN-based information in 

terms of: 

1. Numbers, averages and total POC and AOI values per PAN in relation to PAN 

building area by property type (farmlands, woodlands, and farm/woodlands), mean 

suitability ratings, and mean taxation values (Table 4.1). 

2. Presenting the PAN based results using boxplots (Figure 4.3). 

3. Multivariate regression analyses, by relating the PAN taxation values to PAN 

property and building areas by property type; and repeating the same for each PAN 

taxation per ha value. To linearize the analyses, it was necessary to log transform 

the PAN taxation numbers and the numbers for property building footprint areas. 
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4.3. Results 

The basic summary results for all properties evaluated in the POC and AOI areas 

are listed in Table 4.1. In this, the averaged POC and AOI numbers are similar to one 

another in spite of the AOI area being seven times larger than the POC area and covers a 

wide range of GDD and FFD values, i.e., from 1400 to 1900 °C, and from 100 to 130 days, 

respectively. In terms of property numbers, AOI PIDs ≈ 3.3 POC PANs. This is mainly 

due to increasing woodland numbers from south to north. In contrast, there is little POC 

versus AOI difference in terms of the mean soil suitability and PAN taxation values. In 

addition, the POC versus AOI variations for log10(PAN area), log10(taxation value), mean 

soil suitability and log10(building areas) as split by PAN type all remain very similar as 

shown by the boxplots in Figure 4.4. There are, however, corresponding decreases in PAN 

suitability and taxation such that farms > farm/woodlands > forests. 
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Table 4.1. Statistics (numbers, means, sums) for PAN areas (ha), PAN building footprints 

(m2), PAN crop suitability ratings (%), PAN taxation assessment values ($), all split by 

study area (POC versus AOI), and PAN type. 
 Land Class POC AOI 

Number of PANs 

Farm 1154 2471 

Forest 1024 5031 

Farm & woodlot 444 1120 

Total 2622 8622 

Combined areas of 

PANs (ha) 

Farm 49,633 97,053 

Forest 61,783 490,812 

Farm & woodlot 20,166 46,583 

Total 131,582 634,447 

Combined building 

area of PANs (m2) 

Farm 421,822 797,189 

Forest 17,374 163,502 

Farm & woodlot 15,845 59,236 

Total 455,040 1,019,927 

Average PAN area 

(ha) 

Farm 43.0 39.3 

Forest 60.3 97.6 

Farm & woodlot 45.4 41.6 

Total 50.2 73.6 

Average buildings 

area (m2) 

Farm 365.5 322.6 

Forest 17.0 32.5 

Farm & woodlot 35.7 52.9 

Total 173.5 118.3 

Mean soil quality 

rating (%) of PANs 

Farm 54.2 52.9 

Forest 42.1 37.7 

Farm & woodlot 52.7 47.9 

Total 49.2 43.4 

Mean tax 

assessment values 

of PANs ($) 

Farm 80,353 75,564 

Forest 13,074 14,649 

Farm & woodlot 37,006 33,785 

Total 46,738 34,592 
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Figure 4.3. Boxplots of PANs a) assessment values ($), b) suitability (%), c) area (ha), and d) building area (m2); split by land class 

(farmlands, woodlands, farm and wood land combinations).
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The POC and AOI regression results obtained using log10($ assessment values) and 

log10($/ha assessment value) as dependent variable, and log10(area), log10(building 

footprint) for the farmlands, woodlands, and farm and wood land combinations properties 

as independent variables are shown in terms of: 

1. The best-fitted regression results summaries (Table 4.2) 

2. The corresponding regression coefficients together with their associated error and 

significance evaluations (Table 4.3). 

3. The regression equations (Eq. 4.1, Eq. 4.2). 

4. Scatterplots of actual versus best-fitted log10($ assessment values) and log10($/ha 

assessment values) are presented in Figure 4.4. 

Table 4.2. PAN numbers (n), together with the best fitted R2 and RMSE values for the 

PAN-based POC and AOI tax assessment analyses. 
Tax assessment 

variable 

n R2 RMSE 

POC AOI POC AOI POC AOI 

log10(assessment 

value ($)) 
1588 3561 

0.502 0.474 0.816 0.865 

log10(assessment 

value ($) / ha) 
0.431 0.424 0.337 0.360 
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Table 4.3. Intercept and regression coefficient with errors and significance levels for the PAN-based POC and AOI tax assessment 

analyses. 
Tax 

assessment 

variable 

Regression variable 

Coefficient Std. Error Std. Coeff. t-Value p-Value 

POC AOI POC AOI POC AOI POC AOI 
AOI/P

OC 
POC AOI 

log10(assessme

nt value ($)) 

Intercept 2.87 2.9 0.06 0.04 2.87 2.9 48.5 75.9 1.57 <.0001 <.0001 

log10(PANs area) 0.64 0.61 0.03 0.02 0.42 0.38 22.8 30.5 1.34 <.0001 <.0001 

PAN suitability 0.0111 0.0113 0.0008 0.0005 0.42 0.37 22 29.1 1.32 <.0001 <.0001 

log10(PANs buildings area)0.33 0.164 0.158 0.008 0.005 0.26 0.31 14.7 25 1.7 <.0001 <.0001 

Agricultural & forested PANs -0.143 -0.165 0.021 0.014 -0.13 -0.15 -6.8 -11.6 1.7 <.0001 <.0001 

log10(assessme

nt value ($) / 

ha) 

Intercept 2.85 2.88 0.06 0.004 2.85 2.88 50.6 78.5 1.55 <.0001 <.0001 

log10(PANs area) 0.064 0.064 0.002 0.002 0.54 0.47 26.4 35.1 1.33 <.0001 <.0001 

PAN suitability 0.0107 0.0110 0.0007 0.0004 0.28 0.33 14.9 25.4 1.7 <.0001 <.0001 

log10(PANs buildings area)0.33 -0.380 -0.412 0.027 0.019 -0.28 -0.28 -14.3 -21.3 1.49 <.0001 <.0001 

Agricultural & forested PANs -0.119 -0.142 0.02 0.014 -0.12 -0.14 -6 -10.3 1.73 <.0001 <.0001 
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The regression results presented in Table 4.3 can, in principle, be used for 

approximate soil suitability tax evaluation purposes, by way of the following AOI 

regression-derived equations per PAN area (Eq. 4.1) and per PAN hectare (Eq. 4.2): 

log10(PAN assessment value, $) = 2.90 + 0.61 log10(PAN area, ha) + 0.158 (PAN 

building footprint, m2) + 0.0113 log10(PAN Suitability, %) – 0.165(PAN farm/woodlot)  

                                 Eq. 4.1 

log10(PAN assessment value, $ / ha) = 2.88 + 0.064 (PAN building footprint, m2)1/3 + 

0.0110(PAN suitability, %) – 0.412 log10(PAN area, ha) – 0.142(PAN farm/woodlot)  

                               Eq. 4.2 

In these equations, note that: 

• The negative farm/woodland coefficient for taxation indicates that farm/woodland 

areas are – by definition and as explained above - assessed lower than farmlands 

with woodlots. 

• The PAN $ assessment values correlate positively with the PAN area while the 

PAN $/ha assessment values correlate negatively with PAN area. This means that 

PAN $/ha taxation values decrease with increasing PAN area.  

• The suitability rating coefficients (Table 4.3) for the POC and AOI PAN $ and PAN 

$/ha values effectively remain the same, i.e., 0.0113 versus 0.0110, respectively. 

Similarly, the actual versus best-fitted values for the POC and AOI PAN $ and PAN 

$/ha (Figure 4.4) also remain affectively the same This confirms that the assessment 

values for farmlands and farm/woodland combinations increase with increasing 

potato crop suitability, as rated above and it does so regardless of total or per hectare 

PAN area.  



 

82 

 

• The building footprint coefficient for taxation is positive which indicates that 

taxation by property increases with increasing building footprints. 

• For example, applying Eq. 4.1 to a 100 ha PAN with a 100 % suitability rating and 

buildings with a 100 m2 footprint yields an assessment value of $274,979. This 

turns out to be 12 times higher than a field with a “0” suitability rating.  

 
Figure 4.4. Actual versus best-fitted tax assessment scatterplots for $ and $/ha for each 

POC and AOI PAN, using PAN area, building area, and property type (farmlands versus 

farm and wood land combinations) as PAN-specific predictor variables. 
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4.4. Conclusion 

The results obtained for the POC and AOI areas do not differ greatly according to 

results listed in Tables 4.1, 4.2, 4.3 and Figures 4.3 and 4.4. However, the mean suitability 

rating that is assigned to each PAN with soil drainage, slope and soil association as primary 

rating criteria is a significant tax assessment predictor along with PAN-specific property 

areas and building footprints. This suggests the following: 

1. The crop suitability rating as described in Chapter 3 and Chapter 4 would in 

principle correlate with per-property income histories. 

2. Since there is little POC versus AOI difference among the best-fitted regression 

coefficients, it is reasonable to expect that the methodology so established would 

work equally well to all other PAN-identified farmlands and farm/woodland 

combinations across NB. In general (Faber & Fonseca, 2014), choosing smaller 

areas for analysis such has greater extrapolation limitations than choosing larger 

areas as illustrated by the POC and AOI areas in Figure 4.1 and the standard error 

and t-value listings in Table 4.3.  

3. While the actual procedures used to assess the tax base of individual farm and 

farm/woodland are in detail much more technical than what is represented above, 

it would seem that Eqs. 4.1 and 4.2 are helpful in reasonably estimating $ 

assessment values of fields and properties by area and per hectare following forest 

clearing. 

4. In so doing, once suitable areas are located for each specific socioeconomic context 

(e.g., locations adjacent to existing farmlands, active or abandoned farm fields), 
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these should be inspected regarding mapping veracity, and especially so by slope, 

drainage, and soil property conditions. 
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CHAPTER 5: COMPARISONS OF PUBLISHED FIELD-

GENERATED CROP AND SOIL DATA WITH DSM- AND GIS-

GENERATED DATA LAYERS 

5.1. Introduction 

This chapter presents and discusses results obtained by re-analyzing soil and potato 

crop properties from the perspective of terrain analysis (Moore et al., 1993). This is done 

for two published on-site fields (Perron et al., 2018). The re-analyzed soil and potato crop 

properties in this publication refer to (i) SM, (ii) electrical conductivity (EC), (iii) pH, (iv) 

clay content, (v) Mehlich-3 extracted P, and (vi) tuber yields for the Saint-André field, and 

(i) EC, (ii) Mehlich-3 extracted Ca and P, and (iii) tuber yields for the Centreville field 

(Figure 5.1). In this chapter, these properties are re-examined and re-interpreted by taking 

advantage of (i) the NB-wide availability of LiDAR-generated DEM at 1 m resolution, and 

(ii) the LiDAR-DEM projected cartographic depth-to-water concept (DTW).  

5.2. Methods 

5.2.1. Study Area 

The study area is comprised of two fields: one in Saint-André (21 ha; 47°06'58.6"N 

67°47'54.2"W; PID 3510623) and one in Centreville (18 ha; 46°26'22.0"N 67°42'43.2"W; 

PID10263366). Both fields are located within the AOI, in northwestern NB (Figure 5.2 and 

Figure 5.3). Figure 5.1 shows historic aerial photos of the Saint-André field in September 

2013, September 2015, September 2016, and October 2020. Figure 5.2 shows historic 

aerial photos of the Centreville field in September 2014, August 2016, July 2019, and May 

2021.  
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Figure 5.1. Air photos of the Saint-André field (47°06'58.6"N 67°47'54.2"W) on A. 

9/16/2013, B. 8/24/2015, C. 9/26/2016, and D. 10/11/2020. Source: Google Earth Pro. 

 

 

A. 16/09/2013 B. 24/09/2015 

C. 26/09/2016 D. 11/10/2020 



 

88 

 

 
Figure 5.2. Air photos of the Centreville field (46°26'22.0"N 67°42'43.2"W) on A. 

9/1/2014, B. 8/22/2016, C. 7/8/2019, and D. 5/9/2021. Source: Google Earth Pro. 

Perron et al. (2018) choose these fields to conduct their analyses because they have 

been well studied and are intensively used for potato (Russet Burbank) production. The 

Saint-André field has sandy loam soil texture while the Centreville field has a loamy to silt 

loamy soil texture. Drainage along the Saint-André field ranges from poor to well while 

the Centreville field drain varies from moderately well to well. Both fields are of glacial 

till origin, with coarse fragment representing 15-25 % of soil volume. The Saint-André 

field has a slope range of 0.5-5.0 % whereas the Centreville field has a slope range of 0.5-

9.0 %. Neither field is subject to irrigation. 

Figure 5.4 shows the LiDAR-DEM derived elevations for both fields. Figure 5.5 

shows the 0 to 100 % crop suitability map for both the Saint-André and Centreville fields, 

derived according to the procedures described in Chapter 2. For this rating, the 0-33, 33-

A. 01/09/2014 B. 22/08/2016 

D. 09/05/2021 C. 08/07/2019 
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66, and 66-100 % ranges can be considered poor (coloured red), fair (coloured yellow), 

and good (coloured green), respectively.  

 

 
Figure 5.3. LiDAR DEMs for the Saint-André field (left; elevations 228.3 to 243.0 m) 

and the Centreville field (right, elevations 138.7 to 156.9 m). Source: GeoNB.  

 

 
Figure 5.4. Potato crop suitability rating in % for the Saint-André and Centreville fields, 

with crop suitability coloured red (poor) through yellow (fair) to green (good). 

 The NB-wide DEM coverage was used to generate the 1 m resolution DEM rasters 

for the two fields in Figure 5.4. The map-presented soil and tuber yield data in Perron et 

al. (2018) refer to (i) EC (ECa0-0.3m and ECa0-1m), (ii) tuber yield during 2013, 2014, and 

2016 (Mg/ha); (iii) clay (g/kg), (iv) SM (%), (v) P (mg/kg), and (vi) Ca (mg/kg) of the two 
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fields were taken from paper. These images were “geo-processed” as described below. 

DSM-derived layers on SOC (%), pH, EC (mS/m), clay (%), PWP (%), Sand (%), Db 

(g/cm3), and FC (%) at soil depth 0-20 cm were obtained from Furze (2018). Figure 5.6 

provides a collage of the individual soil property maps for the St-André and Centreville 

field locations.  

 

 
Figure 5.5. To the right: Kriging maps of the apparent soil EC measured (a) ECa0–0.3m and 

(b) ECa0–1m; tuber yield (c) 2013, (d) 2014, and (e) 2016; and (f) clay, (g) SM, and (h) 

Mehlich-3 extracted P of the Saint-André field. To the left: kriging maps of the apparent 

soil EC (a) ECa0–0.3m and (b) ECa0–1m; tuber yield (c) 2014 and (d) 2016; and Mehlich-3 

extracted (e) Ca and (f) P for the Centreville field. Source: Perron et al. (2018). 

5.2.3. Geoprocessing and Statistical Analyses 

The images were “geo-referenced” in ArcMap 10.7.1 using the Add Control Points 

function. Then, the IsoCluster Unsupervised Classification tool was used to reclassify the 

images raster bands. The resulting layers were then reclassified with their appropriate scale. 
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The Focal Statistics tool was used to smooth out the layers. Then, the maps so re-created 

were point-digitized for each soil and crop property along 10 m fishnet grid using the 

Create Fishnet tool. This point-digitization was also applied to the field-specific elevation 

and DTW rasters. The Extract Multi Values to Points tool was used to extract cell values 

of above-mentioned layers. The resulting layers containing the point data for elevation, 

DTW, soil properties and tuber yields were analyzed in terms of basic statistical summaries 

and multivariate and non-linear regression analyses in StatView 5.0. The DTW mapping 

and analysis processes involved two steps: 

1. Applying the DTW=0 definition to all flow channels with > 4 ha upslope flow 

accumulation areas. 

2. Inspecting the soil moisture determination by Perron to locate drainage-promoting 

flow-channel segments to remove the DTW = 0 definition along these segments 

(Figure 5.7). This was done to ensure that field-measured SM (%) content would 

be proportion to increasing DTW. 
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Figure 5.6. LiDAR-DEM generated DTW with > 4 ha upslope flow accumulations 

centered on the Saint-André field before (left) and after (right) DTW = 0 flow-channel 

adjustments.  

5.3. Results and Discussion 

5.3.1. Saint-André Field 

Figure 5.8 shows the Perron et al. (2018) reconstructed data layers for the Saint-

André field regarding a) ECa0-1m, b) ECa0-0.3m, c) clay, d) tuber yield 2013, e) tuber yield 

2014, f) tuber yield 2016, g) P, h) SM (%). The best-fitted regression equations for these 

layers are presented Table 5.1 and by the corresponding plots in Figure 5.9. The equations 

for ECa0-1m, ECa0-0.3m, clay, and P were generated using the fishnet-point extracted values 

for these properties and for the channel-modified DTW layer. The 2013, 2014 and 2016 

tuber yield equations were analyzed by averaging the tuber yield per each DTW 1 m class 

from 0.5 m upwards, with the results shown in Figure 5.10.  
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Figure 5.7. Results generated from Perron et al. (2018) for the Saint-André field 

(47°06'58.6"N 67°47'54.2"W).  
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Figure 5.8. Fishnet-extracted data on gravimetric SM, EC (ECa0-0.3m and ECa0-1m), Clay 

content, Mehlich-3 extracted P, and 2013, 2014, and 2015 tuber yields (Mg/ha) from 

Perron et al. (2018), with best-fitted drainage-adjusted DTW projections for the Saint-

André field. 
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Table 5.1. Best-fitted trend results with equations for average tuber yield, SM (%), EC 

(mS/m), Mehlich-3 extracted P, and clay (%), per modified DTW class (0-1, 1-2, 2-3 m, 

etc.).  

 
Variable Year a b c R2 RMSE 

Tuber 

Yield 

2013 18.0 ±0.8 0.154 ±0.005   0.829 0.30 

2014 14.5 ±0.7   0.338 0.59 

2016 17.4 ±0.8   0.636 0.36 

SM %  30.5 ±0.1 -0.95 ± 0.02   0.863 1.27 

ECa  5.90 ±0.08 -0.84 ± 0.03 0.046 ± 0.003 0.765 0.6 

ECb  7.86 ±0.14 -1.29 ± 0.06 0.074 ± 0.005 0.686 1.1 

P  67.6 ±4.9 46.7 ± 2.0 -3.04 ± 0.16 0.662 3.6 

Clay  5.2 ±0.3 1.1 ± 0.2 5.0 ± 0.20 0.985 0.10 

Tuber yield (Mg/ha) = a DTW exp(-b DTW) 

SM (%) = a + b DTW 

ECa  (mS/m), ECb (mS/m), Melich P (mg/kg) = a + b DTW + c DTW2 

Clay (%) = a (1-1/(1+exp(-b (DTW -c))) + d; d = 13.0 ± 1.0 

 

 
Figure 5.9. Averaged 2013, 2014 and 2015 tuber yields (Mg/ha) per 1 m modified DTW 

classes on the Saint-André field. 

  

The combined Table 5.1 and Figures 5.10 and 11 results suggest a strong 

dependency between tuber yields, clay (%), Mehlich-3 extracted P and soil moisture 

content as these vary across the field from lower to higher elevations. In particular, and as 
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expected, soil moisture increases with decreasing DTW. On the Saint-André field, clay (%) 

is also systematically increasing by about 6 % towards the low DTW location. This increase 

is likely due to an increasing up-to 6 % downhill difference between increasing Silt and 

decreasing Sand content (see Chapter 6). The electrical conductivity determinations are 

lowest along the slopes at the DTW = 8 m locations and increase slightly from there to the 

higher elevations, and strongly increase from there to the lower DTW locations. Part of 

this is likely related to gravitational water flow by which dissolved ions not only 

accumulate in the lower locations but is further concentrated there due to wet-soil 

facilitated evapotranspiration. Along the ridge area, electrical conductivity would also 

increase due to enhanced wind exposure. Mehlich-3 extracted P also peaks at DTW = 8 m. 

This could be related to better P retention where the soil is not too dry and not too wet. The 

drier upslope areas generally tend to be shallower and are eroded therefore may contain 

lower amounts of P retaining minerals and organic matter. Toward wetter soils, soil pH 

tends to increase which implies low P retention by Al and Al oxides/ hydroxides. 

Tuber yields tend to vary by soil conditions when too wet and when to dry: too dry implies 

reduced photosynthesis due to reduced evapotranspiration; too wet leads to insufficient 

root uptake of oxygen due to high biological oxygen demands throughout drainage-

challenged soils. According to Figure 5.11, optimal tuber yields occurred where DTW ≈ 6 

m. Interestingly, 2014 tuber yields in 2014 were on average and across the soil moisture 

and DTW range about 8 Mg/ha lower than in 2013 and 2016. While this could be related 

to a sustained difference in wet/dry weather pattern between 2014 versus 2013 or 2016, it 

could also be due to repeated same-field potato cropping during 2013 to 2014. Potato 
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cropping without intervening crop rotations engenders the proliferation of crop-harming 

soil organisms.  

While soil moisture content will vary from day to day depending on the preceding 

and current weather pattern, the results Table 5.1 and Figures 5.10 and 11 suggest that there 

can also be a close relationship between SM (%) content and the channel-adjusted modified 

DTW data layer. This correspondence is revealed in Figure 5.12 by overlaying the fishnet 

extracted tuber yield and soil property data on the channel-modified DTW layer.  

 

 
Figure 5.10. Overlays of the fishnet-extracted data on the drainage-adjusted DTW 

projections for tuber yield (2016), SM, clay, Mehlich-3 extracted P, and EC for the Saint-

André field.  
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This close relationship cannot be expected to occur during dry but not wet or 

draughty weather conditions, so the time of determining yield-determining soil moisture 

requires weather related considerations. 

5.3.2. Centreville Field  

Figure 5.13 shows the reconstructed Perron et al. (2018) data layers for the 

Centreville field for Tuber Yield 2014, 2016 (Mg/ha), EC 0-0.3 m and 0-1 m, clay (%), 

and Mehlich-3 extracted Ca and P (mg/kg). The best-fitted regression equations for these 

layers are presented in Figure 5.14. These plots and equations were generated using the 

fishnet-extracted values for these properties and for the DTW > 2 ha upslope flow 

accumulation areas. To illustrate, the > 2 ha and > 4 ha flow channels and DTW patterns 

are shown in Figure 5.15 on the left. In comparison, the best-fitted 2014 tuber yield raster 

with (bottom) and without (top) the fishnet-extracted 2014 tuber yields are shown in Figure 

5.15 on top right and bottom right. Based on these results, it appears that tuber yields on 

the Centreville field are also influenced by DTW-influenced soil moisture patterns as they 

develop across the potato cropping season in response to the changing wet and dry weather 

conditions. The difference between the Centreville and the Saint-André field are likely 

related to corresponding changes in texture-related soil-specific water flow and moisture 

retention. To this effect, the sandy-loam, textured Saint-André field and its flow channels 

with > 4 ha upslope flow accumulation would be well-drained. In contrast, drainage would 

be somewhat slower along the loam to clay-loam textured Centreville field thereby 

prolonging moist soil conditions along the flow channels with >2 ha upslope flow 

accumulation. Doing a sensitivity analysis pertaining to all the fishnet-extracted soil 

properties depicted in Figures 5.10 and 5. 14 in relation to > 1 > 2 and the > 4 ha upslope 
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flow accumulation revealed that >2 ha and modified > 4 ha DTW patterns captured the soil 

property trends across the Centreville and Saint-André fields the best, respectively. This is 

especially so revealed when analyzing the mean soil property values per 1 m DTW classes 

(Table 5.2).  

 
Figure 5.11. Results generated from Perron et al. (2018) for the Centreville field 

(46°26'22.0"N 67°42'43.2"W). 
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Figure 5.12. Fishnet extract values for 2014 and 2015 tuber yields, EC (ECa0-0.3m and 

ECa0-1m), and Mehlich-3 extracted Ca and P for the Centreville field. Also shown are the 

best-fitted trend lines with their regression equations. 

Further in comparison, the overall DTW > 2 ha patterns for EC and P are more 

variable and less pronounced for the Centreville field than for the Saint-André field. In 

part, this may be due to (i) the shorter 10.5 m uphill-to-downhill range from drier to wetter 

along the Centreville field, versus 14 m on the Saint-André field. In addition, the effect of 

surface erosion would - in principle - be less pronounced on the Centreville soil because of 

its calcareous parent material, which would facilitate Ca and organic matter binding soil 

aggregation. However, soil depths would still be shallower on the higher ground locations 

where extractable Ca and P concentrations are presumably higher because of a higher 

exposure of the underlying soil parent material. Towards the lower slopes, extractable Ca 

and P divert from one another with Ca increasing and P decreasing with each maintaining 
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a high variability range. For Ca, this trend would relate to continued transfer of Ca2+ ions 

from uplands to lowlands, followed by retention organic matter and fine textures mineral 

particles. For P, this trend would relate to increased pH-related P-solubility and subsequent 

loss of p from the lower slope locations, as also appears to be the case for the Saint- André 

location.  

In all of this, past cropping actions including liming combined fertilizer with P 

additions would add to the tuber yield, extractable Ca and P and electrical conductivity 

variations across the Centreville field. This being so, it is noteworthy that clear DTW-

related uphill-downhill patterns can be recognized and can therefore be quantified as 

illustrated in Figure 5.16, which – in turn – facilitates mapping.  

 
Figure 5.13. Depth-to-water patterns (DTW) along flow channels with > 2 and > 4 ha 

upslope flow accumulation for the Centreville field (left), compared with the DTW > 2 ha 

evaluated tuber yield pattern (top right) overlaid with fishnet-extracted tuber yield points 

(bottom right).  
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Figure 5.14. Mean 2014 and 2016 tuber yields per 1- m DTW > 2 ha classes from DTW 

> 2ha = 0.5 m upwards. Also shown are their best-fitted regression lines and equations. 

The 2014 versus 2016 differences are likely due to year-by-year variations in seasonal 

weather and field-specific crop management patterns. 

5.5. Conclusion 

The results of this Chapter show that the LiDAR-DEM flow channels and 

associated depth-to-water layers can be used to reveal some of the cross-field soil property 

and tuber yield trends. For best results, however, the flow channels and DTW delineation 

process needs to be modified. For example, fast drainage across the field would lead to 

drier uphill soils which – in turn – would imply choosing flow channels with greater 

upslope flow accumulation areas. Doing so was needed to account for the DTW > 4 and > 

2 ha related differences in data variations across the coarse-textured Saint-André field 

versus the fine-textured Centreville field respectively. In addition, it was necessary for the 

Saint-André field to eliminate the automatic DTW = 0 m assignment along some of the 

flow channels with > 4 ha upslope flow accumulation network to get the best possible 
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emulation of the cross-field data variations, and especially so for the reported soil moisture 

variations.  

While the cross-field data for the Saint-André and Centreville fields are highly variable 

and remain especially so for tuber yields, they all shared consistent property specific 

trends across the flow-channel modified DTW ranges. These trends, whether established 

by property-versus-DTW scatterplots or plotting mean property values versus 1 m DTW 

classes, refer to the following: 

1. Tuber yields would be optimal at DTW = 4 to 6 m with tendencies towards lower 

values uphill as well as downhill (Figures 5.15, 5.14). 

2. Electrical conductivity would be lowest at DTW = 6 m (Figures 5.15, 5.14). 

3. Melich 3 extractable P would decrease towards DTW = 0 (Figures 5.15, 5.14). 

4. For the Saint-André field there is also a clear trend towards increased clay content 

towards DTW = 0, but only by 6 % (Figure 5.10). This difference would likely be 

due to the downslope accumulation of upslope eroded silt which would be greater 

than upslope eroded sand (Chapter 6).  

5. For the Centreville field, there is a clear trend of downslope Ca accumulation 

(Figure 5.14)  

With decreasing DTW, one could expect tuber yields to approach 0, but this would 

only be the case where DTW = 0 would correspond to very poorly-drained soil locations. 

In this regard, the Saint-André field would have poorly-drained areas along the likely 

permanent flow channels with > 4 ha upslope flow accumulation along its norther part. For 

the Centreville field, such channels only approach at the northwestern and eastern margin. 

In many cases, soils that would be located at or near DTW = 0 defining flow channels with 
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> 1, > 2 and > 4 ha upslope flow accumulation areas could be receiving well-aerated and 

therefore growth promoting seepage flows. Hence, the tuber yield versus DTW = 0 plots 

in Figures 5.10, 5.14, 5.16 do not converge to 0 when DTW = 0. 
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CHAPTER 6: RE-EXAMINING SOIL VARIATIONS ACROSS A 

HUMMOCKY FIELD UNDER INTENSIVE POTATO PRODUCTION 

USING A CARTOGRAPHIC DEPTH-TO-WATER MAPPING 

PROTOCOL 

6.1. Abstract 

This chapter re-examined field-surveyed elevation (5 m grid) and soil property 

variations (25 m grid) across a hummocky field under intensive potato production using a 

cartographic depth-to-water (DTW) mapping protocol. This protocol was enabled by NB 

wide 1 m resolution LiDAR-generated DEM performed in 2017. The soil and the elevation 

grid surveys were done in 1997. Analyzing the 1997 and 2017 elevation data together 

revealed small but significant erosion-caused elevation changes across the field, with silt 

(%) and DTW above streams with > 4 ha upslope flow accumulation areas accounting for 

upslope and downslope soil losses and gains. The DEM-generated DTW > 4 ha patterns 

could affect the documented soil physical and chemical distribution patterns across the 

field, such that sand CF were found to increase with increasing DTW, while silt decreased 

in the same direction. Soil moisture and nitrate nitrogen (NO3-N) also increased with 

decreasing DTW. Based on these correlations, the DTW > 4 ha pattern then also influenced 

soil carbon (C), pH, ammonium nitrogen (NH4-N), Caesium137 (Cs137), and Mehlich-3 

extracted Ca, Mg, K, iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn), at least to 

some extent. Factor analyzing the data revealed that more than 50 % of the combined data 

variations were dominated by three factors. These could be interpreted as: 

1. A soil loss factor strongly associated with the DTW and soil texture patterns across 

the field. 
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2. A soil cropping factor dealing N, P, K, Ca, Mg, and S additions to the soil. 

3. A metal-complexing soil OM factor which also accounted for NO3-N leaching. 

6.2. Introduction 

The purpose of this study is to re-analyze selected soil properties for a hummocky 

farm field in NB. As published by Zebarth et al. (2002). In this publication, the elevations 

were field surveyed using a 5 m grid spacing. Soil textural, morphological, and chemical 

properties were determined along a 7 x 17 m grid with 25 m spacing. The re-analysis of 

these data was facilitated using LiDAR-generated 1 m resolution DEM. Doing so enable a 

finer hydro-pedological delineation of how the land grades from elevated to the depressed 

locations, quantifiable by way of the cartographic DTW mapping process (Murphy et al., 

2015). The properties so analyzed refer to plough layer depth, soil texture, CF, soil organic 

carbon (SOC), pH, and soil extractable Ca, Mg, K, S, P, NO3-N, NH4-N, Fe, Mn, Cu, Zn, 

and Cs137. 

6.3. Methods 

6.3.1. Study Area 

As summarized by Zebarth et al. (2002), the data was obtained from a hummocky 

175 x 425 m farm field, approximately one km east of Harland, NB (Figure 6.1; 

46°18’23”N 67°30’41”W). The bedrock-controlled surficial deposit (< 2 m) refers to a 

sedimentary-derived loamy lodgment till with minor calcareous content. The soils that 

developed in this till refer to an Orthic Humo-Ferric Podzols, and the Carleton (CA) forest 

soil unit association. Cultivation, which started 120 years ago, transformed the original 

forest soil and related mound and pit topography underneath northern tolerant hardwoods 

to a smoothed surface with interrupted soil layer sequences. Across the surveyed field and 
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beyond, intensified crop management including potato cropping since the 1950 would have 

induced to slope-dependent soil erosion followed by re-deposition in depressions, 

estimated to amount to 22 to 53 tons/ha/year. Annual precipitation amounts to 1096 mm, 

with 796 mm as rainfall 100 mm/month from May to September. The mean monthly May 

to September temperature is 14.9 °C, with annual mean daily air temperature at 4.0 °C. 

 
Figure 6.1. To the left: NB basemap with AOI (yellow boundary) used for LiDAR-based 

potato crop suitability mapping and evaluation. To the right: this chapter’s study area, an 

agricultural field located approximately 1 km east of Harland, NB (46°18’23”N 

67°30’41”W). Basemap source: GeoNB. 

6.3.2. Soil Analysis 

The surface soil (primarily A-layer) was sampled (augured) and analyzed along the 

25 m grid for soil texture (hydrometer method without OM removal), CF content, and SOC 

concentration (combustion method using a Leco CNS-1000 analyzer). Also determined 

were soil pH (1:1 water (H2O)) and Mehlich-3 extracted Ca, Mg, K, S, P, Fe, Mn, Cu, and 

Zn (Shiwakoti et al., 2019). The Mehlich-3 extract formulation is composed of 0.2 

mole/litre (M) acetic acid (CH3COOH), 0.25 M ammonium nitrate (NH4NO3), 0.015 M 
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ammonium fluoride (NH4F), 0.013 M nitric acid (HNO3), and 0.001 M 

ethylenediaminetetraacetic acid (EDTA). Also determined were: 

1. 0 to 15 cm depth soil moisture level on July 11, 1997, using time domain 

reflectometry. 

2. Calcium chloride- (CaCl2) extractable NH4-N and NO3-N. 

3. Cs137, using a Tennelec germanium crystal gamma radiation counter. 

All data was received from the Potato Research Centre of Agriculture and Agri-Food 

Canada in Fredericton, NB. 

6.3.3. GIS Analysis 

The GIS analysis was conducted in ArcMap 10.7.1. Using the 1 m DEM and 

Tarboton’s D8 algorithm generated the slope, filled, flow direction, flow accumulation, 

and flow channel rasters (Tarboton, 1997). The latter were classified into flow channel 

network with 4, 1, 0.25, and 0.1 ha upslope flow accumulations for flow initiation. The 

slope and reclassified flow-channels raster were used to determine the cartographic cost-

distance derived DTW (in cm) so that the 4, 1, 0.25, 0.1 ha DTW classification would 

respectively represent DTW at the end of summer, following major storm events in 

summer, and at the intense time of the snow melt season (Figure 6.2). The surveyed point 

data were subsequently supplemented with their corresponding DEM and DTW extracted 

values using the Multipoint Extraction tool. 
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Figure 6.2. Survey grid and cartographic DTW associated from A to D, with the LiDAR 

and DEM derived flow channels with > 4 ha, 0.25, and 0.1 ha upslope flow accumulation 

areas overlaid on the hillshaded study area DEM, respectively. DTW grades from < 10 cm 

(dark blue) to 1 m (light blue) deep. 

6.3.4. Statistical Analysis 

The combined and GIS generated point data were summarized using basic statistics, 

multivariate regression analysis, and factor analysis (3 factors, Varimax rotated). The 

results generated were summarized in the tables and are illustrated using factor plots and 

actual versus best-fitted scatter plots.  

6.4. Results and Discussion 

A basic statistical summary of the field-surveyed variables is presented in Table 

6.1, by listing the units and the mean, standard deviation, and minimum and maximum 

values of these variables. The correlations among these vary considerably, as shown in 

Table 6.2. 
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Table 6.1. Statistical summary of the field-surveyed variables. Units, mean, standard 

deviation, and maximum and minimum values of these variables are listed. [AP = plough 

water depth; CF = coarse fragment; C = carbon; Ca = calcium; Mg = magnesium; K = 

potassium; P = phosphorus; S = sulfur; Fe = iron; Mn = manganese; Zn = zinc; Cu = copper; 

Na = sodium; Cs137 = caesarium137; NO3-N = nitrate nitrogen; NH4-N = ammonium nitrate; 

pH-H2O = pH (1:1 water); SM = soil moisture content; DTW > 4 ha = depth-to-water > 4 

ha; DEM = digital elevation model]. 

Variable Units Mean Std. Dev. Min. Max. 

Ap m 33.5 4.4 15.0 44.5 

CF cm 34.6 7.7 17.8 53.6 

Sand % 34.5 3.7 26.5 44.0 

Silt % 45.4 2.7 37.7 50.8 

Clay % 20.1 2.1 14.5 24.5 

C % 2.21 0.26 1.40 3.55 

Ca mg/kg 1503.5 239.2 1082.8 2252.2 

Mg mg/kg 188.3 25.4 129.3 260.3 

K mg/kg 176.7 40.7 101.6 281.6 

P mg/kg 327.4 53.4 186.2 470.3 

S mg/kg 81.6 17.7 36.7 141.9 

Fe mg/kg 311.2 34.6 219.2 402.3 

Mn mg/kg 39.7 13.2 19.1 120.4 

Zn mg/kg 3.49 1.15 1.87 10.22 

Cu mg/kg 5.19 1.10 3.10 8.72 

Na mg/kg 40.7 22.4 16.6 107.7 

Cs137 Bq/m2 1690.5 487.5 665.6 3248.5 

NO3-N mg/kg 5.47 2.48 1.93 15.85 

NH4-N mg/kg 0.48 0.19 0.00 1.01 

pH-H20 - 5.40 0.25 4.84 6.08 

SM % 17.4 1.8 13.7 25.7 

DTW > 4 ha cm 631.2 406.5 47.3 1261.9 

DEM M 136.0 2.8 132.0 141.3 
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Table 6.2. Correlation matrix for the variables listed in Table 6.1. Significant regression 

coefficients (> -0.300 or < 0.300) are highlighted in gray. 

 

  

6.4.1. Field-Surveyed Versus LiDAR-Registered Elevation 

Regressing the field against the LiDAR-elevation data produced a R2 value of 

0.991, and a RMSE of 0.249 m, thereby suggesting a close agreement (Table 6.3, analysis 

A). Examining the actual field-versus LiDAR-surveyed residuals further with silt % and 

DTW > 4 ha as additional independent variables increase the R2 value to 0.995 and 

decreased the RMSE value to 0.190 m, i.e., an overall reduction of the residual variations 

by 25 % (tale 6.1, analyses A and B). The regression coefficients so generated indicate that 

the field was subject to field-internal elevation changes likely due to upslope soil erosion, 

which in turn increase the silt content along the lower ground locations along the flow 

channel with > 4 ha upslope flow accumulation. The maximum and minimum elevation 

differences across the field were 9.6 m in 2002, and 9.3 m at the time of the LiDAR survey 

which amounts to a 26 cm soil loss in detail. Assuming the soil density to be 1.6 g/cm3 

yields an overall soil displacement value of 3,360 tons/ha. 

 

 

Variables Ap CF Sand Silt Clay C Ca Mg K P S Fe Mn Zn Cu Na Cs
137

NO3-N NH4-N pH-H2O MC DTW>4ha DEM

Ap 1

CF -0.162 1

Sand -0.238 0.785 1

Silt 0.289 -0.716 -0.843 1

Clay 0.058 -0.498 -0.723 0.237 1

C 0.16 -0.193 -0.276 0.363 0.031 1

Ca 0.247 -0.182 -0.234 0.265 0.083 0.128 1

Mg 0.21 -0.094 -0.191 0.154 0.147 0.178 0.766 1

K 0.108 0.368 0.206 -0.159 -0.167 -0.125 0.254 0.34 1

P 0.08 0.228 0.324 -0.204 -0.324 -0.145 0.423 0.386 0.354 1

S -0.019 0.269 0.198 -0.204 -0.096 -0.095 0.095 0.124 0.4 0.263 1

Fe 0.251 -0.194 -0.21 0.157 0.177 0.084 0.098 0.268 0.005 0.202 0.048 1

Mn 0.186 0.031 -0.022 -0.024 0.071 -0.232 0.493 0.489 0.229 0.546 0.174 0.45 1

Zn 0.097 -0.041 -0.068 0.054 0.053 0.118 0.144 0.1 0.024 0.224 0.093 0.23 0.309 1

Cu 0.357 -0.375 -0.451 0.424 0.27 0.213 0.588 0.545 0.206 0.354 0.005 0.445 0.501 0.439 1

Na -0.093 0.284 0.272 -0.246 -0.175 0.078 -0.203 -0.246 -0.164 0.005 -0.207 -0.35 -0.153 0.075 -0.245 1

Cs
137

0.543 -0.417 -0.505 0.569 0.181 0.426 0.387 0.389 0.218 0.127 -0.058 0.273 0.188 0.089 0.557 -0.14 1

NO3-N 0.023 -0.217 -0.316 0.277 0.216 -0.238 0.251 0.047 0.282 -0.052 0.214 -0.261 0.041 -0.055 0.122 -0.14 0.111 1

NH4-N -0.069 -0.134 -0.083 0.089 0.036 -0.084 0.023 -0.162 -0.252 -0.031 -0.23 -0.235 -0.018 -0.029 -0.005 0.356 -0.036 0.392 1

pH-H2O 0.176 0.024 -0.028 0.036 0.004 -0.117 0.617 0.473 0.347 0.21 -0.202 -0.04 0.348 0.011 0.337 -0.07 0.202 0.12 0.014 1

MC 0.203 -0.264 -0.495 0.422 0.352 0.137 0.355 0.364 0.268 -0.085 0.112 0.184 0.154 0.017 0.38 -0.304 0.406 0.242 -0.097 0.268 1

DTW>4ha -0.113 0.705 0.691 -0.61 -0.464 -0.058 -0.222 -0.126 0.115 0.258 -0.032 -0.092 0.088 0.042 -0.299 0.49 -0.309 -0.466 0.019 -0.025 -0.36 1

DEM -0.088 0.582 0.619 -0.555 -0.406 0.052 -0.442 -0.268 0.037 0.08 -0.046 -0.006 -0.116 0.04 -0.419 0.514 -0.278 -0.549 -0.078 -0.206 -0.39 0.821 1
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Table 6.3. Multivariable regressions (A, B, and C) regarding field-surveyed elevation with 

point-centered LiDAR-DEM, silt %, and DTW > ha as predictor variables. 
Variables Mean Std. Dev. Std. 

Error 

Count Min. Max. 

Surveyed 

elevation, m 

51.9 2.61 0.19 190 47.6 57.2 

LiDAR DEM, 

m 

136.0 2.76 0.20 190 132.0 141.3 

DTW > 4 ha, 

m 

6.3 4.1 29.5 190 0.47 12.6 

Silt, % 45.4 2.65 0.19 190 37.7 50.8 

Surveyed 

Elevation 

Analysis 

Regression 

Variables 

Coefficient Std. 

Error 

Std. 

Coeff. 

t-

Value 

p-Value 

A: R2 = 0.991; 

RMSE = 

0.249 m 

Intercept -76.1 0.892 -76.1 -85.3 <.0001 

LiDAR DEM, m 0.941 0.007 0.995 143.5 <.0001 

B: R2 = 0.99; 

RMSE = 

0.213 m 

Intercept -84.9 1.302 -84.9 -65.3 <.0001 

LiDAR DEM, m 1.009 0.010 1.07 102.7 <.0001 

DTW > 4 ha, m -0.056 0.007 -0.087 -8.4 <.0001 

C: R2 = 0.995; 

RMSE = 

0.190 m 

Intercept -81.7 1.2 -81.7 -65.6 <.0001 

LiDAR DEM, m 1.002 0.009 1.06 113.7 <.0001 

DTW > 4 ha, m -0.070 0.006 -0.11 -11.2 <.0001 

Silt, % -0.047 0.007 -0.047 -7.1 <.0001 

6.4.2. Regression Analysis: Sand, Silt, Clay, and Coarse Fragment 

Plotting sand, silt, clay, and CF % versus DTW > 4 ha showed that sand increased 

but silt and clay % decreased with increasing DTW > 4 ha (Figure 6.3, left). The decreasing 

clay % content with increasing DTW > 4 ha relates directly to the upland silt loss, i.e., clay 

displacement did not occur across the field. Hence, the higher-lying areas were found to be 

coarser and sandier than the lower less well-drained areas, likely due to natural and 

recurring cropping-induced upland upland-to-lowland silt-displacing soil erosion. In this 

regard, Figure 6.3 (right) shows how the surveyed CF % values follow the underlying DTW 

> 4 ha pattern more closely than the hillshaded elevation pattern. Hence, the coarse-to-fine 

texture pattern across the field corresponds more closely with DTW > 4 ha than with the 

overall elevation change. 
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Figure 6.3. Sand, silt, and clay % (left) and very coarse, coarse and medium sand % versus 

DTW4ha along the LiDAR-DEM-derived flow channels with > 4 ha upslope flow 

accumulation areas. 
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Figure 6.4. Left: surveyed CF % overlaid on the hillshaded LIDAR DEM. Right: surveyed 

CF % overlaid on the cartographic DTW. Grid colour: red (low CF %) to green (high CF 

%). 

The very coarse (vc), coarse (c), and medium (m) sized fine (f) and very fine (vf) 

fractions of sand % also increased with increasing DTW > 4 ha, with the trend decreasing 

towards finer grain size such that vc sand % > c sand % > m sand % and no DTW > 4 ha 

and vf > sand % (Figure 6.5, left). 
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Figure 6.5. Left: decreasing trend from very coarse (vc) to coarse (c) and fine medium (m) 

sand % fractions versus DTW > 4 ha upslope flow accumulation, with regression equations. 

Right: silt % versus DTW (m) along the LiDAR-DEM-derived flow channels with DTW 

> 4 ha, > 1 ha, > 0.25 ha and > 0.1 ha upslope flow accumulation areas, with regression 

equations. 

Testing to which extent the DEM-generated DTW > 4, 1, 0.25, and 0.1 ha pattern 

influence the textural components led to the regression results entered into Figure 6.5 

(right). The corresponding R2 values decrease in the order: > 0.1 ha: R2 =0.286, > 0.25 ha: 

R2 =0.255, >1 ha: R2 = 0.329, > 4 ha: R2 = 0.72. This means that the field-assessed 

variations in silt % are best expressed by the slope-affected cost distance between each 

survey point to its closest > 4 ha downstream location. The smaller the cost distance to the 

channels so marked, the more soil-eroded silt arrives and settles there due to recurring rains 

and /or snowmelt induced flooding. 
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6.4.3. Influences of Topography and Other Factors on the Surveyed Soil-Chemical 

Properties 

Factors analyzing the correlation matrix (Table 6.3) of the variables in the Table 

6.1 revealed three factors which account for 53 % if the total variance associated with the 

Table 6.1 entries. The oblique solution pattern for Factor 2 and Factor 3 versus Factor 1 is 

presented in Figure 6.7. From this, Factor 1 can be interpreted as a soil loss factor, based 

on the positive association of the DTW > 4 ha variable with the increasing uphill CF and 

sand content and with the increasing downhill moisture and silt content. Factor 2 can be 

interpreted as a fertilization factor, with its Mehlich-3 > 0.5 loadings for extractable Ca, 

Mg, K, P, S, NO3-N, and Cu further marked by polygon outline. Note that these loadings 

also remain within the – 0.4 to + 0.4 range for Factor 1, i.e., fairly independent of the uphill-

downhill soil loss and displacement effect. Factor 3 can be interpreted as a combined 

organo-metal complexation and leaching factor as reflected by the polygonised > 0.25 

Factor 3 loadings for Fe, Zn, Mn, Cu, and Cs137 centered around the soil OM location and 

the < - 25 Factor 3 loadings for NO3-N and NH4-N in Figure 6.7 (Baken et al., 2011). 

Factor 3 appears to reflect the ability of soil OM to retain ions prior to Mehlich-3 extraction 

in the following order: NO3-N < NH4-N < K ≈ Na ≈ Ca < Mg < Mn ≈ Cs137 < Zn ≈ Cu < 

Fe. Additionally, there is also an overall upland-to-downhill drift of the positive and 

negative Factor 3 loadings, likely due to persistent upland soil loss and to uphill-to-

downhill flow of silt and NO3-N carrying water. The variable for plough water layer depth 

(Ap) is also associated with soil OM, likely due to higher OM content where the plough 

layer is deeper. 
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Figure 6.6. Factor analysis: Factor 2 (top) and Factor 3 (bottom) versus Factor 1 plots, with 

the Factor 2 (Ca, Mg, K, P, S, NO3-N) and Factor 3 (Cs137, Cu, Fe, Zn, C, Ap) entries 

polygonised. 

 Figure 6.7 is used to further illustrate the Factor 1, 2, and 3 association patterns 

based on by connecting the salient Factor 1, 2, and 3 entries in the Factor 3 versus Factor 
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2 plot. Doing so leaves the salient Factor 1 entries at center, the salient Factor 2 entries on 

the right, and the salient positive and negative loadings for Factor 3 in the top and bottom 

halves of this diagram. In this, the Mn and NO3-N entries are shared by Factor 2 and 3. For 

NO3-N, this would be due to NO3-N fertilization and low soil NO3-N retention. For Mn, 

this would be due to applying Mn toc prevent common scab proliferations (Streptomyces 

scabies; McGregor & Wilson, 1966). Similarly, the positive Factor 3 entry for Cu may be 

due to foliar Cu applications in order to reduce potato blight infections (Phytophtora 

infestans; Finckh et al., 2006). 
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Figure 6.7. Factor 3 versus Factor 2 plot, with the Factor 1 (silt, DTW > 4 ha, SM, sand, 

Na), Factor 2 (Ca, Mg, K, P, S, NO3-N), and Factor 3 (Cs137, Cu, Fe, Zn, C, Ap) defining 

entries polygonised. 

The multivariate analysis results presented in Table 6.4 serve to elaborate on the Factor 

1, 2, 3 patterns in Figure 6.6 and 6.7 in quantitative terms as follows: 

1. The Mehlich-3 extracted Ca and Mg levels are highly correlated (Eq. 6.1) 

possibly due to their presence in the calcareous soil parent material (Carleton Forest 

Soil Association) and/or due to periodic Ca/Mg carbonate and phosphate 

application (Kostic et al., 2015). These applications would also increase soil pH 

and extractable P (Eq. 6.4 and 6.9). Persistent soil loss along the upper field 
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locations and related transfer of water-solubilized Ca and Mg enriches extractable 

Ca and Mg at low DTW > 4 ha field locations (Eq. 6.1 and 6.7). 

2. Mehlich-3 extracted P would not only increase with increasing Ca phosphate 

uptake applications but would also increase Mn and Sand % content (Eq. 6.4; 

Hopkins et al., 2014). The significant contributions of Mn to P and vice versa (Eq. 

6.6) could be due to frequent Mn phosphate applications, designed to control potato 

scab (McGregor & Wilson, 1966). The increase in extractable P with increasing 

Sand % could be due to soil erosion due to silt-caused lowering of extractable P 

concentrations along the lower areas of the field (Fixen & Bruulsema, 2014; 

Mansfeldt, 2004). 

3. The pH levels in soil water would also increase with Ca and K applications but 

would decrease with elemental S applications (Eq. 6.9; Penn et al., 2018). Ca and 

K applications increase soil pH through, e.g., calcium oxide (CaO) and potassium 

oxide (K2O) hydration. Elemental S is used (i) to adjust S deficiencies, (ii) to 

increase soil acidity by lowering soil pH, and (iii) to control the proliferation of 

bacterial disease-causing agents including scab (Klikocka et al., 2005; Haddad et 

al., 2016). In this way, Mehlich-3 extracted S also increases with K and Ca soil 

additions but decrease with increasing pH (Eq. 6.5). 

4. The CaCl2 extractable NO3-N levels increase with increasing NH4-N, likely due to 

NH4-N and/or urea additions and K-containing NO3-N fertilizer (Eq. 6.8). In 

addition, NO3-N as well as K levels decrease significantly with increasing DTW > 

4 ha due to flow-induced NO3-N and K transfer from the upper to the lower field 

locations. 
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5. Likewise, CaCl2 extractable NH4-N increases with extractable NO3-N but 

decreases with extractable K (Eq. 6.10). In this, adding NH4-N containing fertilizer 

would - in part - lead to (i) K displacement from soil cation exchange sites and (ii) 

nitrification (Hagin et al., 1990). The NH4-N increase with increasing DTW > 4 ha 

(Eq. 6.10) would be related to low denitrification rates on well-aerated upland field 

locations (Kelling et al., 2011). 

6. Mehlich-3 extracted Fe increases with increasing Mehlich-3 extracted Cu and Mn 

but decreases with increasing NO3-N and pH (Eq. 6.13; Schwab, 1989). In this and 

within the existing soil pH range, increasing pH leads to decreasing Fe hydroxide 

solubility. Decreased Fe extractability with increasing NO3-N would be due to 

decreasing Fe retention within low-lying and therefore less aerobic field locations. 

7. The variations in Mehlich-3 extracted K are affected by four variables, namely 

pH, NO3-N, P, and DTW, with pH, NO3-N and P likely increasing with K-fertilizer 

applications while extractable NH4-N would decrease on account of K induced 

displacement via cation-exchange (Eq. 6.14). 

8. Mehlich-3 extracted Cu, Fe, Mn, Zn, Cs137 are linked to one another via Factor 

3, but their quantitative dependencies are element specific. In detail: 

i. Mehlich-3 extracted Zn is primarily related to Mehlich-3 extractable Cu but 

weakly so with increasing DTW > 4 ha (Eq. 6.2). 

ii.  Mehlich-3 extracted Mn and Cu are in part quantified by Mehlich-3 

extractable Fe (Eq. 6.6 and 6.11), with Cu also increasing with increasing Ca, 

P, and Sand % content. 
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iii. Mehlich-3 extracted Cs137 increases with Mehlich-3 extracted Cu but also 

increases with increasing soil C, with plough player depth, and with Silt % (Eq. 

6.12). Hence, soil C and Mehlich-3 extracted Cs137 increase slightly from the 

upland to the lowland field locations. 

The Mehlich-3 extracted Cu, Fe, Mn, Zn fractions as well as Cs137 are therefore 

directly or indirectly related to DTW 4 > ha, i.e., directly so for Zn via Eq. 6.2, and 

indirectly so via increasing NO3-N for Fe (Eq. 6.13), increasing Silt % and soil C for 

Cs137 (Eq. 6.12), and decreasing Sand % for Cu (Eq. 6.11). 

 Table 6.4. Multivariate regression results for the variables listed in Table 6.1. 

  
Eq. Dep. 

Variabl

e 

Intercept Variable 1 Variable 2 Variable 3 Variable 4 R2 RMS

E Coeff. Std. 

Error 

Coeff. Std. 

Error 

Coeff. Std. 

Error 

Coeff. Std. 

Error 

Coeff. Std. 

Error 

6.1 Mg 66.1 7.6 Ca       0.585 16.4 

0.081 0.005       

6.2 Zn 1.14 0.3 Cu DTW>4ha     0.232 0.701 

0.364 0.051 0.055 0.013     

6.3 C 0.26 0.28 Silt NO3-N     0.274 0.225 

0.048 0.006 -0.040 0.007     

6.4 P -73.7 34.4 Ca Mn Sand %   0.535 36.5 

0.068 0.013 2.22 0.28 6.2 0.7   

6.5 S 238 25 K pH-H2O Ca   0.355 14.1 

0.224 0.027 -43.0 5.5 0.024 0.005   

6.6 Mn -35.1 4.6 Ca Fe P   0.523 7.73 

0.015 0.003 0.111 0.017 0.079 0.012   

6.7 Ca -1727 257 pH-H2O P DTW>4ha   0.553 160 

513 49 1.76 0.23 -0.182 0.03   

6.8 NO3-N -0.77 0.68 NH4-N DTW>4ha K   0.585 1.61 

6.67 0.063 -0.323 0.029 0.029 0.003   

6.9 pH-

H2O 

4.6 0.1 Ca S K   0.554 0.165 

0.00058 0.00005 -0.0056 0.0007 0.0022 0.0003   

6.10 NH4-N 0.47 0.05 K DTW>4ha NO3-N   0.42 0.149 

-0.0016 0.0003 0.020 0.003 0.042 0.004   

6.11 Cu 0.449 0.07 Ca Sand Fe P 0.6300 0.055 

0.00014 0.00002 -0.0097 0.0013 0.00075 0.00002 0.00046 0.0001 

6.12 Cs137 -3394 417 Silt Ap C Cu 0.574 319 

51.4 10.2 36.9 5.8 398 96 122 24 

6.13 Fe 431 44 Cu Mn NO3-N pH-H2O 0.421 26.6 

12.3 2.1 0.94 0.17 -4.1 0.8 -36.7 8.6 

6.14 K -109 51 pH NO3-N P NH4-N 0.42 31.4 

38.9 9.6 7.1 1.0 0.24 0.04 -87.4 12.8 

6.5. Conclusion 

The data analyses of the variables in Table 6.1 revealed three variation-controlling 

factors pertaining to topography, crop management and soil-internal nutrient associations. 

The topographic factor was quantified in terms of point-specific elevation and soil erosion 

impacts incurred from 1997 to 2016 and relating the uphill-downhill patterns for sand, silt, 

clay, and CF to the end-of-summer cartographic DTW index. This index refers to the slope-
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cost distance between any point along the field and its closest permanent stream locations. 

The chemical soil properties pertaining to soil C, NO3-N, NH4-N, Ca, Mg, K, P, S, Fe, Mn, 

Cu, Zn, Cs137 were also related to this index directly or indirectly as detailed above, and to 

Factors 2 and 3 in general. Factor 2 refers to periodic N, Ca, Mg, K, S, and P soil 

amendments, while Factor 3 represents the general association between heavy-metal 

micronutrients and soil OM. 

In the absence of historical year-to-year field operation records, one-time soil 

property surveys do not lend themselves for quantifying direct cause-and-effect 

relationships are related to sequential crop management actions. Nevertheless, the 

analytical results as described above are consistent with the potato-cropping 

recommendations as summarized, e.g., by the Government of NB (Government of New 

Brunswick, 2022). Generally, these recommendations refer to applications involving N, P, 

K, Ca, Mg, S, Fe, Mn, boron (B), Cu, Zn, molybdenum (Mo), and chloride (Cl). Among 

these, Ca and Mg containing dolomite is recommended for upward pH adjustments to 

address the acidifying N and P fertilizer effects and therefore reduce subsequent aluminum 

(Al) and Mn mobilization (Ondrasek et al., 2021; Holmström et al., 2005). Elemental S is 

recommended for downward pH adjustments towards 5.5 ≤ pH ≤ 6 to maintain scab-free 

soil conditions. Gypsum (CaSO4) can be used as Ca and S supplement without affecting 

soil pH.  

Among the micronutrients, only B is generally used as a supplement to reduce 

brown heart and water core symptoms in the harvested potatoes (Keren & Blingham, 1958). 

Most of the micronutrients are well supplied by soil OM; however, maintaining soil OM 

requires replenishment through three-year crop rotation cycles involves carefully chosen 
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cereal, green manure, and forage sequences, with emphasis to reduce recurring potato-

compromising infections referring, e.g., to scab, black-scurf inducing Rhizoctania and 

nematodes (Dhaliwal et al., 2019).  

In summary, the results as described and discussed suggest that it is now possible 

to quantify erosion- and water-flow induced patterns and subsequent changes across fields 

through high-resolution elevation and soil property surveys that, ideally, would need to be 

repeated from time to time to further enable field-specific soil-response determinations and 

evaluations. 
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CHAPTER 7: SUMMARIES, CONCLUSIONS, AND 

RECOMMENDATIONS FOR FUTURE WORK 

7.1. Summary 

The objective of this thesis was to produce a LiDAR-based potato crop suitability 

map, that along the Upper Saint John River Valley in NB at a high 1 m spatial resolution 

using multi-criteria evaluation. This was done by: 

1. Using NB’s 1 m resolution DEM for slope, flow channels, and DTW derivation. 

2. Updating NB’s Forest soil map using NB wetlands and waterbodies maps. 

3. Combining soil and topographic criteria into an equation to determine potato crop 

suitability. 

4. Applying results and discussing them in three parts: (i) Grand Falls area, (ii) 

Florenceville area, and (ii) Woodstock area. 

 Validation of the produced potato crop suitability map for the AOI was done by: 

1. Validating the produced LiDAR-based potato crop suitability map by addressing 

the extent to which the assessed market value of farmlands and woodlands reflects 

soil quality across the study area. 

2. Validating the produced LiDAR-based potato crop suitability map by addressing 

the extent to which soil factors (potassium (K) content, calcium content, 

phosphorus (P) content, potato tuber yield across years, electrical conductivity 

(EC), clay content, and soil moisture content) reflects soil quality by way of image 

analysis (Perron et al., 2018). 

3. Validating the produced LiDAR-based potato crop suitability map by comparing 

image analysis results with a DSM for NB (Furze, 2018). More specifically, DSM-
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derived layers on SOC content, pH, EC, clay content, PWP, sand content, Db, and 

FC. 

In summary, it was found that: 

1. The crop suitability rating as described in Chapter 3 and Chapter 4 is in principle 

valid across the AOI. The assessment values of farmlands and farm and wood land 

combinations reflects the soil suitability for potato crop. AOI regression derived 

equations can, in principle, be used for approximate tax evaluation purposes. 

2. In Chapter 5, it is shown that the flow channel network and associated depth-to-

water layers (DTW) derived from LiDAR-DEM data at 1 m resolution can be used 

to quantify and map DTW-related trends pertaining to field surveyed soil property 

and tuber yield variations, with the latter showing optimal tuber growth at 4 < DTW 

< 6 m. For achieving best results, adjustments to the automatically generated flow 

channels and DTW layers may be needed to account for field-specific flow and 

drainage condition as demonstrated. 

3. It is now possible to quantify erosion- and water-flow induced patterns and 

subsequent changes across fields through high-resolution elevation and soil 

property surveys that, ideally, would need to be repeated from time to time to 

further enable field-specific soil-response determinations and evaluations. 

7.2. Suggestions for Further Work 

Potato crop suitability mapping does not account for GDDs and FFDs since there 

are ample days to grow potato across NB; however, further work could be done in terms 

of looking at climate differences across the province. More specifically, further work could 

be done in terms of looking at topographic pattern changes in precipitation, climate, 
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temperature, GDDs, and FFDs. Looking at changes in precipitation would inform on soil 

erosion. Looking at changes in precipitation would, in part, at crop and crop rotations that 

would minimize soil erosion (Jankauskas & Jankauskiene, 2003). While this project 

informs on potato crop suitability mapping, this project could technically be applied to 

other crops and to other provinces. For example, cranberries and rice require DTW-

mappable wet soil conditions. When looking at other cold-weather crops in general and 

applying the potato crop suitability mapping to NB and other provinces, it will be necessary 

to look at weather- and soil-based factors and related information as provided by each 

province. 

As mentioned in Chapter 4, further work could be done to determine the extent to 

which potato crop suitability reflects the tax base of individual farmlands and farm and 

woodland combinations properties since tax assessment is much more technical than just 

looking at soil quality, property size, and the presence or absence of infrastructure. For 

example, property location (including nearness to community services, access, etc.), 

quality of infrastructure construction, etc. are also taken into account by tax assessors 

(Government of New Brunswick, n.d.). 

Furthermore, further work could be done in terms of looking at in-field survey 

information. In this thesis, it was done for three fields (Saint-André field, Centreville field, 

and Hartland field). Other fields were not looked at due to a lack of available data. 

7.3. Practical Applications  

The LiDAR-based potato crop suitability process as described above can, in 

principle, be used to create new farming opportunities, and/or to explore DEM-mapped 

within field variations for additional crop-growing potentials, whether these refer to 
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potatoes or other crops. Technical aspects in this regard refer to, e.g., forest clearing, 

terracing, improving soil drainage, locating suitable areas for crops with prolonged GDD 

requirements, and/or delineating in-field soil and crop management zones especially 

targeted at increasing crop yields while enhancing biodiversity and soil conservation goals 

at the same time.  
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Appendix: Comparisons of Published Field-Generated Soil Data with 

DSM-Generated Data Layers, for the Saint-André Field 

This Appendix informs on a comparison between the field surveyed data for the 

Saint-André field and the corresponding data layers generated by way of digital soil 

mapping as developed and described by Furze (2018) using NB-wide LiDAR-DEM 

elevation data, smoothed and resampled at 10 m resolution. The DSM-generated soil 

property layers project soil physical and chemical properties from numerous data layers 

pertaining to, e.g., elevation, DTW, slope, and > 12,000 geochemical survey points across 

NB. The GIS process of doing so involved random forest regression modelling. Figures 

A.1 and A.2 show the resulting data layers for SOC (%), pH, EC (mS/m), clay (%), FC, 

(%), PWP (%), and soil Db (g/cm3), all in comparison with the surveyed Saint-André field 

data. This comparison reveals the following the surveyed and DSM generated data layers: 

1. EC (mS/m): the patterns are similar, but the field data are five times lower than the 

DSM results; this differences in range is likely not due to forest versus field; also, 

the DSM-EC pattern was found to be inversely related to DSM-Sand %. 

2. pH: the field data are categorically higher than the DSM result; this could be due 

to historical differences in field zonation and liming applications, as shown in 

Figure A2. The DSM data are based on forest soil conditions which are generally 

acidic except on calcareous soil formation. Hence, the overall pH survey and DSM 

patterns would not be compatible nor comparable in principle. 

3. PWP (%) & FC (%): the field survey results but with a wider range than the DSM 

results; the patterns so generated not compatible unless modified by calibration. 
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4. SOC (%): the DSM and field survey patterns are similar, but the DSM -generated 

pattern is 10 times higher than field results. This difference unlikely due to forest 

versus field SOC differences, although field SOCs could be lower than forest SOCs 

due to ploughing and cropping induced organic matter losses. 

5. Clay (%): visually, the surveyed results are somewhat compatible with the DSM 

results. However, the actual numbers are not, varying by 7 percent across the field 

when surveyed, but only by 0.2 % as DSM modelled.  

All of this suggests that more work and fine-tuning is required with respect to 

digital soil mapping across NB, especially since the results so generated can be compared 

with detailed in-field survey data. Within this context, it would be good: 

1. to pool additional fields with existing soil property GPS-surveys and subject to 

further LiDAR-DEM based analysis them; 

2. to supplement the agricultural field surveys with channel-defined forest cutblock 

data before and after harvesting;  

3. to fine-tune DSM modelling procedures according to the generalizable trends that 

would emerge from the pooled in-field soil survey information.  
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Appendix Figure 1. Comparing the Saint-André field data with the DSM generated 0-20 cm deep results for EC (mS/m), clay (%), 

FC (%), and PWP (%).  
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Appendix Figure 2. Comparing the Saint-André field data with the DSM generated 0-20 cm deep results for SOC (%) and pH. Also 

shown: field layout in 1966 and in-field distribution of the NB forest soil associations. 
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