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Abstract

Botnets have been identified as one of the most dangerous threats through

the Internet. A botnet is a collection of compromised computers called zom-

bies or bots controlled by malicious machines called botmasters through the

command and control (C&C) channel. Botnets can be used for plenty of

malicious behaviours, including DDOS, Spam, stealing sensitive information

to name a few, all of which could be very serious threats to parts of the

Internet. In this thesis, we propose a peer-to-peer (P2P) botnet detection

approach based on 30-second conversation. To the best of our knowledge,

this is the first time conversation-based features are used to detect P2P bot-

nets. The features extracted from conversations can differentiate P2P botnet

conversations from normal conversations by applying machine learning tech-

niques. Also, feature selection processes are carried out in order to reduce

the dimension of the feature vectors. Decision tree (DT) and support vec-

tor machine (SVM) are applied to classify the normal conversations and the

P2P botnet conversations. Finally, the results from different classifiers are

combined based on the probability models in order to get a better result.
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Chapter 1

Introduction

1.1 Introduction

With the rapid development of the Internet, many different kinds of cyber-

attacks continue to emerge. As the technologies are evolving all the time,

attack tools become more and more complicated, yet it is now easier for

attackers to conduct attacks. That is why network security has become one

of the most important topics.

A botnet first appeared in 1999, an IRC-based botnet called PrettyPark.

After decades of development, botnets have become more and more compli-

cated and robust. People have become aware of the threats to the Internet

security caused by botnets. So botnet detection, botnet mitigation and some

related researches have become hot topics in the area of Internet security.

Although botnets use Trojan or some other malware for propagation, the
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command and control communication (C&C) is the main difference between

botnets and other kinds of malware, namely, a one-to-many control mecha-

nism. That is why botnet can be the most dangerous threat in the Internet

world. Feily et al. pointed out that with the C&C mechanism, the bots are

not physically controlled by a bot master. They can be located everywhere

with different time zones, laws, languages, etc. These differences make botnet

detection more difficult [1].

This thesis presents a conversation-based botnet detection approach with de-

cision fusion. We first propose the conversation-based features for detection

and then carry out a feature selection process to find suitable feature subsets

for each machine learning technique. Finally, a decision fusion algorithm is

used to improve the performance of our proposed peer-to-peer (P2P) botnet

detection approach based on the results of each classification model.

1.2 Summary of thesis contributions

Nowadays, botnets, especially P2P botnets have become one of the most

dangerous threats in the field of network security. Numerous botnet de-

tection approaches have been put forward by researchers to detect botnets,

including IRC-based botnets, HTTP-based botnets, P2P botnets, etc. De-

tection of centralized botnets (IRC- and HTTP-based botnets) is relatively

easy because of the central point of failure. In this thesis, we propose a

conversation-based P2P botnet detection with decision fusion in order to de-
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tect P2P botnets effectively. This thesis makes the following contributions.

1. The proposed P2P botnet detection solution uses conversation-based

features. To the best of our knowledge, this is the first time that

conversation-based features are used in P2P botnet detection. As the

features are derived from the headers of the network packets, they

do not rely on the packets’ payloads. With this characteristic, our

detection approach will not be affected by traffic encryption. Moreover,

the proposed approach can also be used to detect unknown P2P botnets

which will be demonstrated in Chapter 4;

2. Two supervised machine learning techniques: decision tree (DT) and

support vector machine (SVM) are used to detect unknown P2P bot-

nets. Both of them have produced a high true positive rate (TPR)

and a low false positive rate (FPR), which confirm that our proposed

detection method works well in detecting P2P botnets.

3. A feature selection process is proposed in order to reduce the dimension

of the feature vectors for DT and SVM. The original conversation-based

feature vector has 16 dimensions. However, we believe that not all the

features in the feature vector are needed when training the classifiers.

Thus, different feature selection algorithms are used to remove the less

effective features from the original feature vector.

4. Decision fusion makes the use of the probability models generated by

DT and SVM. To the best of our knowledge, this is the first time

3



in network security that a probabilistic method is used to combine

the results of multiple machine learning techniques. The M-branch

smoothing method is used to built a probability model based on DT.

For SVM, the distance from an instance to the hyperplane is employed

to calculate the probability of the instance being classified to a specific

class. Decision fusion based on probabilities allows us to improve the

detection results by considering the results from DT and SVM together.

1.3 Thesis organization

The rest of the thesis is organized as follows:

Chapter 2 gives an overview of botnets. The life cycle of a botnet is described

and the hazards of botnets are also listed which gives the general information

of botnets. The previous work about botnet detection and related research

using machine learning are reviewed as well.

In Chapter 3, our proposed approach is discussed in detail. First, the

overview of the proposed P2P botnet detection method is described. Then,

the feature selection processes for DT and SVM are presented separately. The

details of probability models for DT and SVM are shown as well. Finally,

the decision fusion algorithm is displayed in order to improve our detection

approach.

Chapter 4 describes the datasets and metrics we used in our experiments.

Also, the procedures of the experiments are discussed as well. Different

4



feature selection methods are evaluated with the experimental datasets. The

best feature selection methods are then used to select features for DT and

SVM. With the feature subsets, both DT and SVM have competitive results

compared with the original feature vector. Finally, the results of decision

fusion are compared with the results from individual DT or individual SVM

in terms of the metrics.

Finally, Chapter 5 concludes the thesis and outlines some possible further

directions to improve or extend our work.
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Chapter 2

Background information and

literature review

2.1 Life cycle of botnet

Knowing the life cycle of a botnet can help people in understanding how a

botnet works. Different researchers have different opinions about the botnet

life cycle. They have different definitions, but, the basic structures are the

same. In this chapter, the life cycle of a botnet is described as shown in

Figure 2.1.

2.1.1 Spread

This is the initial phase of a botnet’s life cycle. The attacker spreads malware

to find the vulnerabilities in remote hosts. If a vulnerability is found, then

6



Figure 2.1: Typical life cycle of a botnet
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the malware copies itself to that host and executes it for further spreading.

Another way to do this is sending email with an attractive title and the body

containing some words to trick the recipient to click the link or the attach-

ment in the email. By using this social engineering technique, some recipients

are tricked and the malicious binaries are installed on their machines. Holz

et al. gives a detailed explanation [2].

2.1.2 Secondary injection

The hosts execute malicious scripts in bot binaries. As a result, these scripts

download the latest bot binaries from the Internet automatically. It makes

sure that the bot binary on a host is up to date. At this point, a host becomes

a bot in the current botnet.

2.1.3 Command and Control

• For IRC-based and HTTP-based botnets, a bot establishes a connection

to the C&C server through the C&C mechanism. Depending on this, a

bot receives commands or orders from the attacker through this connec-

tion and responses back. There are two ways to spread a command in

centralized botnets, namely push-style and pull-style. IRC-based bot-

nets belong to the former category (See Figure 2.2), while HTTP-based

botnets belong to the latter one (See Figure 2.3).

• For P2P-based botnets, C&C connections are established between dif-

8



Figure 2.2: Push style

Figure 2.3: Pull style
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ferent bots. The bots in a P2P-based botnet not only send commands,

but also receive commands from other bots depending on the current

status of the network. The attacker sends a command to some of the

bots. After receiving a command from the attacker, these bots will

forward the command to the remaining bots in the same botnet.

2.1.4 Attack

This phase is the most important phase in a botnet life cycle. It is also

the purpose of a botnet. Botnets typically have the following malicious be-

haviours: 1) Spam: by using Spam, attackers can expand their botnets or

spread some harmful viruses; 2) DDoS (Distributed Denial of Service): at-

tackers can control a large number of bots to launch DDoS to a victim through

C&C mechanism; 3) Stealing information: attackers can steal some personal

and sensitive information from bot hosts; and 4) Make use of resources: at-

tackers using the resources of bot hosts without permission to launch attacks

or to do some unauthorized activities.

2.1.5 Update and maintenance

• Update

As more and more researchers start to work on botnet detection, the

attackers also need to upgrade their tools against the detection tech-

niques. Bot masters upgrade the bot binaries by distributing new ver-

10



sions of the bot binaries in this stage. This can make the botnet always

robust to new detection techniques.

• Maintenance

After a bot host joins a botnet, it has to communicate with other bots

to make others and the bot master aware that it is online. Therefore,

the bot master always knows the status of the botnet.

2.2 Classification of botnets

It can be seen from the life cycle of a botnet that the C&C mechanism

is the core part of a botnet. Depending on the C&C mechanism, a bot

can communicate with the bot master or other bots, which makes botnets

different from traditional trojans, worms and other malware. The bot master

can issue commands to thousands of bots to launch an attack. Cooke et

al. pointed out that from the perspective of C&C mechanism, botnets can

be classified into three different categories, namely, centralized, distributed,

and random. This paper also first introduced P2P botnet into academia.

Researchers always come up with new ideas for C&C communication [3]. In

2010, Wang et al. combined both centralized C&C and distributed C&C and

developed a new botnet, which has the advantages of both centralized and

distributed botnets [4]. Dittrich and Dietrich [5] divide botnets into four

categories based on the development of botnets: namely IRC, HTTP, P2P

and hybrid botnets.

11



Based on C&C communications and the previously published papers, we

classify botnets into three categories as follows.

2.2.1 Centralized botnets

Figure 2.4: Centralized botnet

A centralized botnet usually contains a C&C server, which is used by its bot

master to send commands to the bots as shown in Figure 2.4. All the com-

mands are sent by the bot master, there is no command transmitted among

the bots. Bots ask for new commands from the C&C server periodically or

the C&C server sends commands periodically. As the C&C server is the core

of a centralized botnet, a botnet will be disabled as soon as it is found by

a detector. However, because the commands are transmitted fast and the

latency is low, it is still being widely used in the wild. IRC-based botnets

and HTTP-based botnets are both centralized botnets.

12



• IRC-based botnets

IRC-based botnets play an important role in the development of bot-

nets. It is the originator of all kinds of botnets. The first botnet was

based on IRC. At the beginning, people developed IRC-based bots to

help people when they were chatting. But, the idea was used by some

malicious developers, and then the earliest IRC-based botnet emerged.

It could be used by an attacker to control the hosts in the network and

to carry out malicious activities to some victim targets. It is the foun-

dation of today’s botnets. Because the communication characteristics

were easily detected and the data was not encrypted, it is relatively

easier to detect IRC-based botnets compared to other kinds of botnets.

However, it is also easier to construct IRC-based botnets, which makes

them popular among attackers.

For the detection of IRC-based botnets, researchers already did a great

deal of theoretical studies of them and also a large number of exper-

iments. So, there are some effective approaches to detect IRC-based

botnets. Goebel et al. extracted an IRC bot nickname pattern and

used it as a signature to detect an IRC-based botnet [6]. Lu et al. first

classified the network traffic into IRC and non-IRC classes based on the

traffic characteristics, and then applied K-means, merged X-means and

unmerged X-means to the IRC traffic to classify the IRC traffic into two

clusters, namely, normal IRC traffic and botnet IRC traffic. By com-

paring these three methods, they reached the conclusion that merged

13



X-means has an outstanding performance in clustering the traffic. This

method is less effective when the data is encrypted [7].

• HTTP-based botnets

Hackers started to seek new C&C mechanisms for botnets. As a result,

HTTP-based botnets came into being. Different from IRC-based bot-

nets, the traffic of HTTP-based botnets can be hidden in normal HTTP

traffic. So, it can evade the interdiction of firewalls so as to achieve

the purpose of avoiding detection. The spam model of the Rustock

rootkit used encrypted HTTP in C&C communications to make it dif-

ficult to be detected [8]. BlackEnergy is another typical HTTP-based

botnet [9]. Detecting HTTP-based botnets is harder than IRC-based

botnets, because HTTP-based botnets can hide their traffic better.

2.2.2 P2P botnets

Detecting or mitigating a P2P botnet is very challenging. Different from

centralized botnets, C&C servers are not used in P2P botnets. All the com-

munication relies on the P2P protocols used by P2P botnets. Attackers can

send a command through any bot in a botnet and this bot will forward the

command until all the other bots receive the command. As shown in Fig-

ure 2.5, a bot in a P2P botnet acts as a server as well as a client, which

means it can both send commands and receive commands. There is a large

portion of P2P traffic in the Internet, so the traffic coming from P2P botnets
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is hidden in the benign P2P traffic just as HTTP-based botnets are. This

makes it hard to find P2P botnet traffic among the traffic with normal P2P

applications.

Figure 2.5: P2P botnet

Even if you find some bots in a P2P botnet, it still can be a problem to

mitigate an entire botnet, because a P2P botnet can work well when some

bots are removed from it. Although P2P botnets are more complicated than

centralized botnets, they are more robust. Thus, they are the most popular

botnets in recent years.

2.2.3 Hybrid botnets

In 2007, Wang et al. proposed an advanced P2P botnet. It combines the

characteristics of centralized botnets and P2P botnets. There are two types
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of bots in their advanced P2P botnet. They are servent bots and client bots.

The servent bots construct a P2P network and each servent bot acts as a C&C

server which can be found in centralized botnets. So it is much more robust

than centralized because there is no central point of failure in their proposed

P2P botnet. What is more, it can relay the commands faster than P2P

botnets with the client bots [4]. In 2008, Dong et al. predicted new features

of the next generation P2P botnet, and came up with a new advanced P2P

botnet based on the discussion of existing botnets [10]. In their proposed

botnet, the bots are split into different clusters; each cluster contains both

server bots and client bots. Foreign links are used for the communication

between different clusters. Server bots have public IP addresses and client

bots just have private addresses. It means that all the client bots should

connect to at least one server bot to receive commands, and server bots

are used to maintain the overlay network. Moreover, they use a shared

information box for robustness. Dong and his colleagues compared their

proposed botnet with a Kademlia based botnet [11] (such as Peacomm) and

a hybrid P2P botnet by using different metrics (such as bot degree, network

synchronization performance and robustness).

2.3 The hazards of botnets

With botnets, it is much easier to launch attacks which are more dangerous

than the traditional attacks. Lanelli et al. claimed that botnets can be used
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for different kinds of cybercrimes [12]. The Honeynet project also listed sev-

eral types of attacks including: DDoS, Spam, keylogging, installing malware,

etc [13]. Some common attacks are listed below.

2.3.1 DDoS

DDoS is one of the most dangerous threats caused by botnets. The incredible

number of bots in a botnet makes DDoS very destructive. Attackers make

use of a botnet to control the bots to send requests or send data to a victim

system in order to take it down. Some large botnets can even be harmful

to ISPs (Internet Service Provider). Table 2.1 shows the number of DDoS

targets increased from 2006 to 2009 [14]; we can speculate that it is because

of the emergence of P2P botnets. From 2009, it began to decrease during the

next 3 years. However, the number of attacks was still large. A reasonable

explanation is that researchers have paid more attention to botnets, especially

P2P botnets. They started to investigate botnets and came up with different

detection or mitigation methods which caused the decline. Table 2.2 shows

us that the papers published since 2009 mainly concentrate on how to detect

P2P botnets. This table comes from a survey of more than 100 papers carried

out at the Information Security Center of eXcellence (ISCX), University of

New Brunswick, 2012.
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Table 2.1: DDoS

Year Unique C&C Target Count Unique Targets

2006 414 50650 25953
2007 848 35566 15755
2008 618 202678 21312
2009 590 7058221 10991
2010 430 1545208 13757
2011 322 275459 5327

Table 2.2: Paper statistics

2011 2010 2009 2004-2008 All years

Applied 12 55% 16 46% 26 57% 7 26% 61 47%
Theoretical 6 27% 12 34% 6 13% 11 41% 35 27%

System 3 14% 2 6% 8 17% 6 22% 19 15%
Review 1 5% 5 14% 6 13% 3 11% 15 12%
Total 22 100% 35 100% 46 100% 27 100% 130 100%

2.3.2 Spam

It is a good choice for attackers to use a botnet as a tool to send spam.

The bots in a botnet send spam to target addresses after they receive the

attack commands from the bot master. So it is difficult to find out the real

attacker and blacklisting becomes useless. Ramachandram et al. mentioned

in their paper that most spam are generated by botnets [15]. John et al. used

a platform called botlab to monitor approximately 200,000 email addresses

at the University of Washington. On average, these addresses can receive

2.5 million emails every day and over 90% of these were classified as spam.

Almost 80% of the spam were caused by 6 different botnets [16]. The result

is quite consistent with Ramachandran’s work.

18



2.3.3 Stealing information

A bot master can make use of bot binaries to gather sensitive information

from bot hosts by using techniques like screen capture, reading log files, key

logging, etc. For example, SDBot is a botnet that uses a keylogging binary

to steal users’ personal information. That can be sold to others to perform

illegal activities [17].

2.3.4 Embezzling resources

An attacker can control part of a bot host’s resources to do illegal activities

for some purposes. For example, the bots can be controlled to visit some

websites frequently so as to increase the traffic of the website without the

users’ permissions. They can also be used to cast spurious votes.

2.4 Detection approaches

People have worked on botnet detection for several years and many detection

approaches were proposed by researchers. We classify these approaches into

the following five categories described in the next subsections.
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2.4.1 Network signature-based botnet detection appro-

aches

These approaches can be used to detect botnets by using the content of net-

work traffic. Typically, these approaches extract some signatures from the

content of some known botnets’ traffic. And then these signatures are used

to identify the malicious traffic coming from the same botnet. Unfortunately,

these kinds of approaches cannot be used to detect an unknown botnet. For

example, in the early stage, Nugache used port 8. At that time, this sig-

nature could be used to detect Nugache. Obviously, this method will not

work anymore, because today’s botnets are much more complicated. Lu et

al. applied n-grams to the content of packets in order to detect IRC-based

botnets [7]. To classify the packets into different known applications, they

extract the temporal-frequent characteristics from the packets. These known

applications’ temporal-frequent characteristics were labelled and trained by

a novel decision tree. For a specific application domain, namely IRC applica-

tion in their work, different clustering algorithms were applied to detect IRC

botnets depending on the standard deviation of all the 256 payload features.

As this is a content-based method, so it can be only applied to unencrypted

botnets. Geobel et al. used regular expressions to represent all suspicious IRC

nicknames. Then n-grams were used to analyze and evaluate the nicknames

to determine if a nickname belonged to a bot [6].
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2.4.2 Network behaviour-based botnet detection ap-

proaches

From another perspective, there are some differences between the behaviour

of botnet traffic and the behaviour of normal traffic. Compared to net-

work signature-based botnet detection approaches, these kinds of methods

are more general, and do not restrict their applications to unencrypted bot-

nets. To some degree, these approaches can also detect unknown botnets,

so they can be used widely. However, the true positive rate is relatively low

compared with network signature-based detection approaches. Strayer et al.

introduced a network behaviour-based botnet detection method which can

detect IRC-based botnets. In their processes, the first step is to filter out

non-IRC flows, because these flows cannot be a part of IRC-based botnet

traffic. Then, they use machine learning techniques to cluster the remaining

flows into different applications. The flows which are clustered as chat-like

applications are then passed to a correlator stage. In this phase, the flows

which have a similar pattern are grouped together. Then, all the flows in each

group are passed to topology analysis to determine if they have a common

controller. Finally, analysts determine if the flows belong to a botnet or not

based on the results of topology analysis [18]. As the final determinations

are made by human experts, it is a limitation of this detection approach.
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2.4.3 Honeypot-based botnet detection approaches

Honeypot is a technology that simulates a host to make an attacker believe

it is a bot in his botnet. Although it receives the commands published by

the bot master, it will not do anything bad to any target. A honeypot acts

as a bot in a botnet and it receives all the commands that the bot master

sends. Therefore, it can easily obtain some important information from the

bot binary by using reverse engineering or some other techniques. It can also

obtain information about how the botnet works, what the commands are,

etc. This information can be used to analyze some characteristics about a

botnet, which can be used by different botnet detection approaches.

The honeypot approaches cost fewer resources in gathering valuable infor-

mation about a botnet. It can also collect some information about new

attack techniques and their signatures. Honeyd [19] and GenIII [20] are two

frequently used honeypots in this field.

The honeypot approaches have some shortcomings. It takes time to collect

information and analyze the obtained binaries. What is worse, if an attacker

is aware of the existence of a honeypot, the attacker will not send anything

to it and the honeypot will receive nothing. Some attackers may even send

some fake binaries or commands to the honeypot which could mislead the

detector. This could be more dangerous. Freiling et al. used the honeypot

approach to collect malwares for analysis [21]. In their experiments, the

honeypot found automated malwares in a short time. Gu et al. also gathered

two P2P botnets, Storm and Nugache, by using honeypot techniques [22].
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2.4.4 Host-based botnet detection approaches

Host-based botnet detection is a relatively straightforward detection method.

It treats a bot binary as a virus, Trojan or some other malicious malware.

It detects bots in the way that anti-virus software does. It monitors a host’s

behaviours, recording system events and some other information about the

host to see if the host is infected by a bot binary. The information includes

register modifications, remote control activities, file deletion, the traffic re-

ceived by or sent to a host, etc. An alert is triggered when some typical

botnet behaviours are detected on a host. Masud et al. used tcpdump to

record the log of packets sent and received through the network interface.

At the same time, exedump was used to record the time when a program

started and ended. With these records, they applied machine learning tech-

niques like SVM and decision tree to build classification models by corre-

lating the records. These classification models were used for further botnet

detection [23]. Al-Hammadi et al. also proposed a novel host-based bot-

net detection approach. Their experiments showed that by correlating the

behaviours on a host based on a time window, their method worked well

in detecting bot hosts. Three factors are considered in their approach: (1)

in a time window t, the rate of change of the following fields, namely, DU

(destination unreachable), FCA (failed connection attempts) and RST (reset

connections). The choice of the three fields is based on the observation of

P2P botnets. These fields are strong factors that can indicate if there are

bad behaviours on the host; (2) in a time window t, the rate of the change

23



of the number of packets sent per second; (3) in a time window t, the time

between two continuous system calls to send outgoing data such as [(send,

send), (sendto, sendto)]. Then, a correlate algorithm was applied to these

three factors to detect P2P botnets [24]. Nummipuro et al. concentrated on

the behaviours of a host after receiving the commands. They hooked the

SST (system service table) to see how the data coming from the Internet

affected the function calls of a system and detected the botnet based on the

suspicious host behaviours. Behaviour blocking was applied when suspicious

behaviours were found; it stopped the suspect system calls [25]. Giroire et

al. detected IRC-based botnets based on the connection frequency between

a bot and a C&C server. In their opinion, there are only two situations in

which a host will stably connect to an end-point for a long period. In one sit-

uation, a user visits some websites often (such as news websites, work related

websites or entertainment websites), or some servers are contacted by client

applications (such as RSS servers, mail servers). All the IPs belonging to

this situation are added into a white list and these kinds of connections are

not considered in the botnet detection process. In the other situation, the

connections between a host and a C&C server are maintained for a long time.

Because a bot needs to connect to C&C server to get commands or maintain

the connection for a certain period. In the paper, there is a new concept

called persistence which indicates how stable the connection is. They divide

a time window into several tiny time slots. The persistence in a time slot is

assigned a 1 if there is a connection between a host and a C&C server, and 0
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otherwise. If the sum of all the persistences in a time window is larger than

a predefined threshold, an alert arises. However, this method may be useless

to detect P2P botnets, because all the connections between different bots in

a P2P botnet are changing all the time depending on the current topology

of the botnet. The connection between two IPs will not be stable and last

for a long time [26].

2.4.5 Hybrid botnet detection approaches

Hybrid botnet detection approaches usually combine two or more previous

methods to detect botnets. For instance, Yin et al. proposed a method which

combines both the network-based botnet detection approach and the host-

based botnet detection approach. At the host level, sensors are deployed

on the hosts to obtain exceptions and suspicious processes. On the other

hand, a detection system is deployed at the network level. It monitors all

the traffic in the entire network to discover abnormal traffic. Finally, it

correlates all the data from host and network level to detect P2P botnets.

Wang et al. combined three detection approaches [27]. The honeypot-based

botnet detection approach, the host-based botnet detection approach and

the network-based botnet detection approach are all used in their proposed

method.
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2.5 Machine learning

Machine learning plays an important role in artificial intelligence. It is widely

used in many fields (such as pattern recognition, date mining, medical di-

agnosis and so on) because of its excellent performance. Machine learning

algorithms extract the internal relationship of the data which can be pre-

sented by some rules or models for prediction and classification. Following

are three common machine learning categories.

2.5.1 Supervised learning

Supervised learning algorithms learn from an existing dataset whose records

are labelled. Then the learning result is used to analyze unlabelled records

and label the records with reasonable values. In botnet detection, machine

learning techniques are used to train with both botnet datasets and normal

datasets to generate classifiers (As can be seen in Figure 2.6 and Figure 2.7,

different machine techniques generate different classification models. For

instance, a decision tree generates a tree which can classify every record into

different classes. Whereas, a hyperplane is generated after training with a

support vector machine; it has the ability to classify almost all the records

into the correct class). Decision tree and SVM are typical supervised learning

algorithms.

Strayer et al. propose a method to detect IRC-based botnets with super-

vised learning algorithms. The whole process has two steps. Three machine
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Figure 2.6: Decision tree

Figure 2.7: Support vector machine
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learning techniques are used in each step, namely, decision tree, näıves bayes

and bayesian network. In the first step, they used these three techniques to

divide the traffic into IRC traffic and non-IRC traffic. The results showed

näıve bayes classifier performed best in this step. After filtering out most of

non-IRC traffic, the remaining traffic was passed to the following step. In this

step, IRC traffic was split into malicious IRC traffic and normal IRC traffic.

Different from the first step, the bayesian network had the best performance

in this step [28]. Lu et al. applied the decision tree to classify the network

traffic into different classes depending on the applications which generate the

traffic. Then they analyzed the temporal-frequent characteristics of flows for

each application’s traffic to differentiate malicious traffic generated by bots

and normal traffic created by normal applications. They also applied cluster

techniques to IRC traffic: malicious traffic and normal traffic were clustered

into two clusters with good performance [29].

2.5.2 Unsupervised learning

In comparison with supervised learning, labels are not needed in the train-

ing dataset in unsupervised learning. The purpose of unsupervised machine

learning techniques is to divide unlabelled data into different clusters based

on some certain metrics. The main idea is, if two data instances are close to

each other based on the predefined metrics, these two data instances should

be clustered into the same cluster. In the case of a botnet, the records can

be classified into two clusters, a normal cluster and a malicious cluster. In
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most cases, we have to label the clusters, but, unsupervised learning does

not have the ability to tell which cluster should be labelled as malicious. So

some characteristics of the clusters are used to label the clusters. For ex-

ample, “botnet” can be labelled to a cluster if the standard deviation of all

the records is smaller than the other cluster. Or we can assign “botnet” to a

cluster which has fewer records than the other cluster, because botnet records

are much fewer than normal records in real traffic. K-means and X-means

are two commonly used unsupervised learning algorithms.

Lu et al. used K-means to split IRC traffic into two clusters [30]. As a bot

is preprogrammed, all the bots in the same botnet have similar behaviours.

They thought that the traffic generated by bots should be much more stable

than the traffic created by human beings. So the authors believed that

the standard deviation of temporal-frequent characteristics of flows can tell

apart malicious traffic and normal traffic. For two clusters, the cluster with

a smaller standard deviation of temporal-frequent characteristics of flows is

malicious.

2.5.3 Semi-supervised learning

Semi-supervised learning is a combination of supervised learning and unsu-

pervised learning. For many practical problems, it is very difficult to gain

a great deal of data with labels. It also may cost a lot of resources and

take a long time. Semi-supervised learning is used to deal with the problem

that there is only a small part of the training records that have labels. Mo-
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hammad et al. considered that in a real environment, where a large number

of data are transmitted with high speed, collecting labelled data could be

very difficult. So they used semi-supervised learning to make use of a small

amount of labelled data for training with large number of unlabelled data.

Their experiments showed the accuracy is good by using the classification

model trained by the semi-supervised learning technique they used [31].

2.6 Concluding remarks

This chapter introduced some basic information about botnets and previous

research on botnet detection. Botnets can be classified into three types in-

cluding centralized botnet, P2P botnet and hybrid botnet. They can be used

to launch DDoS attacks, send spams, steal information, etc. Some published

botnet detection approaches were discussed as well. Most of the studies are

based on flow which lead us to extend to conversation. Meanwhile, machine

learning techniques are commonly used in a lot of researches. Usually, the

machine learning techniques are used independently, so we came up with the

idea that combining some of the machine learning techniques with probabil-

ities. The next chapter will present the proposed detection approach based

on conversation and machine learning.
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Chapter 3

Proposed approach

In chapter 2, a number of botnet detection methods are given. These detec-

tion methods and their background information has led us to propose a new

P2P botnet detection approach in this thesis.

The P2P botnet detection approach we propose in this thesis is based on

30-second conversations between two IPs (A conversation represents all the

traffic transmitted between two IPs with a specific protocol). A conversation

between two IPs is split into 30-second phases and each 30-second phase is

presented by a 16-dimensional feature vector, which will be explained later.

Decision Tree (DT) and Support Vector Machine (SVM) are applied to build

classifiers to distinguish the P2P botnet conversations from normal conver-

sations.

Section 3.1 presents an overview of our proposed approach. Section 3.2 dis-

cusses all the component in detail, including a feature extractor, a feature
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selection component and the classification techniques.

3.1 Overview

Figure 3.1: Proposed framework

32



Our proposed P2P botnet detection solution uses a 16-dimensional feature

vector to represent a 30-second conversation between two IPs (TCP, UDP,

ICMP and some other protocols are all included.) Feature selection processes

are applied to reduce the dimension of the feature vectors, consequently

reducing the training and test time. The reduced dimensional feature vectors

are used to construct classifiers. Finally, based on the probability models in

the classifiers, a decision fusion algorithm is used to combine all the results

from multi-classifiers in order to make a final decision to distinguish P2P

botnet traffic from normal traffic.

Figure 3.1 shows the basic framework and processes of our detection ap-

proach. Let NTtrain represent the network traffic used for training (traffic

includes all the traffic captured through the network interface). In the feature

extraction component, we set the value of time window to 30 seconds. Dur-

ing the feature extraction phase, some P2P botnet unrelated packets, such

as broadcast packets, multicast packets are discarded in order to reduce the

processing time. During each time window, all the packets (except for the

dropped packets) in a same time window are grouped into different conversa-

tions, and feature vectors Fall are built from the conversations depending on

the headers of the packets. Fall represents the 16-dimensional feature vectors

which are the input of the feature selection component. Using Fall the fea-

ture selection component generates optimal feature subsets for DT and SVM

(FDT and FSVM), respectively. The goal of the feature selection component

is that, by using the reduced dimension feature vectors, the classification
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result is either as good as using 16-dimensional feature vector or equally has

a competitive result with higher performance.

After the feature selection procedure, all the original 16-dimensional feature

vectors need to be reconstructed depending on the FDT and FSVM obtained

from the feature selection component. The new training datasets are used

to build DT and SVM classifiers. Assume Itest is a test instance which needs

to be judged as a normal or a P2P botnet instance. Before Itest is sent

to the classifiers, it must be reconstructed, and two new test instances are

generated, namely ItestDT and TtestSVM . These two instances represent the

same conversation that are used in DT and SVM, respectively.

The last step requires making a final decision with the results from all of the

classifiers. For Itest, when the results from all classifiers are the same, there

is no doubt that Itest can be labelled as the result from one of the classifiers.

However, the results of different classifiers may be different. In this case,

we need to apply a probability model to each classifier in order to make a

reasonable decision to classify Itest as a normal or a P2P botnet conversation.

3.2 Components

3.2.1 Feature extraction

In previous studies, a large number of the detection methods used packet

signatures or flow features to detect P2P botnets. To the best of our knowl-

edge, conversation-based P2P botnet detection has never been proposed in
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the past, and this is the first time that conversation-based feature vectors are

used in P2P botnet detection. We believe that our conversation-based P2P

botnet detection approach has a number of advantages over signature-based

and flow-based detection approaches due to the following reasons.

• Signature-based P2P botnet detection methods have a high degree of

detection rate, but they heavily depend on the content of the packets,

so we can infer that this kind of detection approaches can only detect

unencrypted P2P botnets. It is difficult to detect unknown P2P bot-

nets because the signature for every botnet is different. However, our

conversation-based P2P botnet detection method is a totally content-

free method. All the features can be obtained from the packets’ headers.

Therefore, it can detect not only encrypted P2P botnets, but also some

related unknown P2P botnet. In other words, our proposed method is

more general with a relatively high detection rate.

• Compared to flow-based features used in P2P botnet detection meth-

ods, the conversation-based features can reveal more information about

the relationship between two connected IPs. As we know, a P2P bot-

net uses P2P protocol to establish the C&C communication. Therefore,

there is a peer-to-peer relationship between two interacting hosts. Our

conversation-based P2P botnet detection method considers all traffic

between two zombies to generate conversation-based features. How-

ever, flow-based features generated by P2P botnet detection methods
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can only investigate one-way traffic between two hosts. In other words,

it takes a one-sided view of the C&C communication. That is, con-

versations can reflect the “peer-to-peer” relationship much better than

flows can.

For instance, host A and host B send packets to each other. If we apply

flow-based detection methods to these two zombies, we will extract

two flows that represent the packets from A to B and from B to A,

respectively. Actually, there is a chance that these two flows are similar

to other “normal flows” (there are too many normal flows). In this

situation, there may be a misclassification. However, if we employ

conversation to show the C&C communication, the result can be more

accurate, because the conversation features can reveal the “peer-to-

peer” relationship better.

• Conversation-based P2P botnet detection method uses less memory

than flow-based P2P botnet detection methods. As mentioned previ-

ously, we need two flows to present the communication pattern. How-

ever, a conversation feature vector can also show the pattern. When

comparing these two methods, it is evident that the conversation-based

P2P botnet detection method uses almost half of the memory that flow-

based P2P botnet detection methods consume.

• Unlike the features in previous work [32][33], all features used in our

approach are basic features or some combinations of the basic features.
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As a result, the time complexity is small, and it consumes fewer system

resources.

Table 3.1 shows the 16 features we create for the proposed conversation-

based P2P botnet detection approach. These features are generated from

a 30-second conversation and is composed into a feature vector (we call it

an instance) to represent a 30-second conversation. With the label of the

instance (generated from labelled datasets), the feature vector can be ex-

pressed as: <F1, F2, · · · F16, LABEL> where Fi represents the ith feature

in Table 3.1.

The feature extractor is responsible for converting the network raw packets

into a 16-dimensional feature vector for each 30-second conversation. Fig-

ure 3.2 shows that, the raw packets from the network are the input of the

feature extractor. In this component, the traffic capturer captures packets

based on a time window. Then, all packets in the same time window are

grouped into different groups. All packets belonging to the same conversa-

tion are put into the same group, meaning that the number of the groups is

equal to the number of the conversations in a time window. In Chapter 4,

we will use this component to generate training datasets and test datasets.

In real life, a small part of the network raw packets do not need to be pushed

into the time-based buffer (See Figure 3.3), for these packets (such as broad-

cast packets, multicast packets) cannot be part of the P2P botnet traffic.

Therefore, we can discard these kinds of packets without any operation or

analysis, which can reduce not only the processing time, but also the buffer
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Table 3.1: Selected network traffic features

Feature Description

F1 The total bytes transmitted in a conversation
F2 The total number of packets transferred in a conversation
F3 Average length of a packet in a conversation
F4 The number of the packets whose size are smaller than 146 in

a conversation
F5 The proportion of packets whose size are smaller than 146 in

a conversation
F6 The number of the packets whose size are larger than 146 in

a conversation
F7 The proportion of packets whose size are larger than 146 in a

conversation
F8 The size of the first packet in a conversation
F9 ratio1 + 1

ratio1
; ratio1 : The ratio between the number of

packets in one direction and the number of packets in the
other direction

F10 ratio2+ 1
ratio2

; ratio2 : The ratio between the number of bytes
in one direction and the number of bytes in the other direction

F11 ratio3 + 1
ratio3

; ratio3 : The ratio between average bytes per
packet in one direction and average bytes per packet in the
other direction

F12 The difference between the number of packets in one direc-
tion and the number of packets in the other direction in a
conversation

F13 The proportion of the difference between the number of pack-
ets in one direction and the number of packets in the other di-
rection in a conversation ( feature12

total number of packets in a conversation
)

F14 The difference between the number of bytes in one direction
and the number of bytes in the other direction in a conversa-
tion

F15 The proportion of the difference between the number of bytes
in one direction and the number of bytes in the other direction
in a conversation ( feature14

total number of bytes in a conversation
)

F16 The difference between the number of average bytes per
packet in one direction and the number of average bytes per
packet in the other direction
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Figure 3.2: Feature extractor

Figure 3.3: Packet filter
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usage. As soon as the capturer captures a packet, it sends the raw packet to

the buffer which is used to store all the packets in the same time window.

Then, these packets are analyzed based on the information in their headers.

They are grouped into different conversations, and then a 16-dimensional

conversation feature vector with an additional class label is extracted for

each conversation. A feature vector with class label is shown below:

<F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, F16, Label>

We create different threads to deal with the capture process and the convert-

ing operation, which ensures these two operations can be done simultaneously

so as to avoid losing packets when the converting operation is processed.

3.2.2 Feature selection

We employ 16 features to represent a conversation. However, we believe that

the 16 features are not all needed when training the classifiers. There may be

some features that will not impact the classification result at all, or perhaps

might make the result worse. In this section, we introduce some feature

selection methods in order to reduce the dimension of the feature vectors.

The output of an individual feature selection algorithm is an ordered feature

list which ranks the features based on their own metrics. Finally, we generate

a final feature list based on these ranked feature lists. The aim of feature

selection is to choose a suitable feature subset for improving classification

performance or decreasing the complexity of a classification model without

significantly decreasing the performance.
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3.2.2.1 Feature selection for decision tree

We applied two different feature selection algorithms for DT, which are based

on information gain and information gain ratio separately. Since the con-

struction of a decision tree is based on information entropy, these two al-

gorithms are appropriate to be used in the feature selection process for DT.

The following equation is the definition of information entropy in information

theory:

H(C) = −p (C1) log2

(
p (C1)

)
− p (C2) log2

(
p (C2)

)
· · ·− p (Cn) log2

(
p (Cn)

)
where H(C) represents the information entropy of C and Ci is a value that

C can be assigned to. p(Ci) shows the probability that Ci can be assigned

to C.

• Feature selection based on information gain:

The feature selection method based on information gain evaluates every

attribute by using information gain (See equation (3.1)), which shows

how much information entropy an attribute can contribute to a system.

The features with higher ranks have better ability to split a dataset

into different parts, since they contain more information than other

features. The features at the bottom of the ranked feature list are not

good at separating a dataset, since they are less informative. That is,

for a specific feature F , the larger the information gain is, the more

information F has. Of course, we prefer to put the top ranked features
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into our final feature list and to discard the bottom features. The ideal

situation is that a feature has the largest information gain, which means

that we can build a classification model just based on this feature.

How to calculate the information gain of a feature F is shown by Equa-

tion (3.1):

InfoGain(F ) = H(C)−H(C|F ) (3.1)

where C is the target value of a classification model, it can be C1, C2,

· · · , Cm.

H(C|F ) in Equation (3.1) represents the classification model’s entropy

without feature F . It can be calculated with the following equation:

H(C|F ) = P1∗H (C|F=F1)+P2∗H (C|F=F2)+· · ·+Pn∗H (C|F=Fn)

(3.2)

where n is the number of values that can be assigned to feature F ;

Pi =
number of the instances with the value of F is Fi

total number of the instances
(3.3)

and

H(C|F=Fi) =
m∑
j=1

(
− p(C=Cj|F=Fi)

)
∗ log2

(
p(C=Cj|F=Fi)

)
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p(C=Cj|F=Fi) =
number of instances with Fi and Cj

number of instance with Fi

• Feature selection based on information gain ratio:

The feature selection algorithm based on information gain ratio also

evaluates the features depending on the information entropy basically.

But, it uses information gain ratio instead of information gain to rank

the features. Information gain ratio is a combination of information

gain and intrinsic information which can be seen from Equation (3.4).

This algorithm ranks the features according to the information gain

ratio of each feature. Also, the top features in the ranked feature list

are much more important than the bottom features. Clearly, the top

features should be in the final feature subset while some features at the

end of the ranked list should be discarded.

GainRatio(F ) =
InfoGain(F )

SplitInfo(F )
(3.4)

where SplitInfo(F ) represents the intrinsic information of feature F .

SplitInfo(F ) = −
n∑
i=1

|Fi|
|F |
∗ log2

(
|Fi|
|F |

)
(3.5)

where n is the number of values can be assigned to feature F ; and |Fi|

is the number of the instances with the value of F is Fi.
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3.2.2.2 Feature selection for SVM

As with DT, we also applied two feature selection algorithms for SVM. Each

feature selection method outputs a ranked feature list as we mentioned in

Section 3.2.2.1. These two algorithms are ReliefF and SVM-RFE.

• ReliefF:

This novel method was proposed by Kononenko in 1994. It is an exten-

sion of the Relief algorithm, which was proposed by Kira and Rendell

in 1992. It is widely used in feature selection for SVM. The basic idea

is that, for an instance and its adjacent instances (which come from

the same class), if they have a similar or same value of one feature.

Then, we can say it is a good feature. Otherwise it is not. On the

other hand, a good feature should make an instance and the adjacent

instances (which come from the opposite class) have totally different

values as well. On the contrary, if a feature does not have these kinds

of characteristics, it is not good enough. ReliefF assigns a feature a

large weight if it is a good feature. Finally, all the features are sorted

by their weights. Algorithm 1 shows the ReliefF feature selection algo-

rithm [34]. In our case, we only have two different class values. Thus,

between line 5 and line 7, there is only one class value which is different

with Ri’s label.

• SVM-RFE:

SVM-RFE is short for support vector machine-recursive feature elim-
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Algorithm 1 Pseudo code of ReliefF

Input:
the dataset D contains training instances with class value;

Output:
RFL feature ranking from best to worst;
number of features n;

1: initiate the weight for each feature W [F ] = 0;
2: for i = 1 to m do
3: randomly select an instance Ri;
4: find k nearest hits Hj;
5: for each class C 6= class(Ri) do
6: from class C, find k nearest misses Mj(C);
7: end for
8: for F = 1 to n do
9: W [F ] = W [F ]−

∑
k

j=1
diff(F,Ri, Hj)/(m · k)+∑

C 6=class(Ri)
[ P (C)
1−P (class(Ri))

∑
k

j=1
diff(F,Ri,Mj(C))]/(m · k)

10: end for
11: end for
12: RFL = features are sorted based on the W [F ].
13: return RFL;

ination. As the name says, it combines SVM and RFE to assess the

features. It is an iterative process to eliminate features from the original

feature list. In each round, each feature is assigned a weight depending

on the attribute ranking criterion, and the feature with the minimum

weight is eliminated from the feature list. This process is repeated until

all the features are removed from the original feature list. The order

of the features that have been removed shows the importance of the

features. The first feature that removed from the list has the smallest

importance. While the last feature removed from the list is the most

important feature in this case. So a ranked feature list is generated ac-
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cording to the order of the features removed from the original feature

list. The pseudo code is shown in Algorithm 2.

Algorithm 2 Pseudo code of SVM-RFE with RBF kernel

Input:
the dataset D contains training instances with class value;
number of features n;

Output:
RFL feature ranking from best to worst;

1: initial Dtrain = D;
2: for i = 1 to n do
3: weight vector w = libsvm(Dtrain);
4: Q = K(Dtrain);
5: for all the features in Dtrain do
6: rank(i) = 1

2
wTQw − 1

2
wTQ(−i)w;

7: end for
8: find the feature F with the smallest selection criterion,

Fmin=min(rank);
9: remove Fmin from all the instances in Dtrain;

10: update Dtrain without Fmin;
11: add Fmin into RFL;
12: end for
13: return RFL;

3.2.2.3 Combination of the ranked feature lists

During the feature selection process, we employ multiple training datasets

to avoid the impact of some special training datasets. Although all the data

are selected randomly, there still can be a chance that a training dataset is

special enough to produce incorrect results. When we apply feature selection

algorithm to this kind of dataset, the ranked feature lists cannot reveal the

exact relationship among the features. So we generate several datasets and
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Table 3.2: Ranked feature list example

GainRatio

1WN 31 6 5 8 7 1 16 14 11 15 10 2 4 13 9 12
2WN 3 5 6 8 14 1 7 16 11 15 10 2 4 13 9 12
3WN 3 6 5 7 1 8 14 16 11 10 15 2 4 13 9 12
4WN 3 5 6 7 1 8 14 16 11 10 15 2 12 9 13 4
5WN 3 5 6 8 7 1 14 16 11 15 10 2 9 13 4 12

informative less informative
1 3 : feature F3 in Table 3.1.

consider all the ranked feature lists together to reduce the impact from a

special dataset. We use n datasets <D1, D2, · · · , Dn> in our feature selec-

tion component. As we are using four feature selection algorithms, we will

have 4n ranked feature lists at the end. Here is an example that applying

GainRatio-based feature selection algorithm to five training datasets and the

ranked feature lists are shown in Table 3.2.

Let M represent a feature selection method, after applying M to a training

dataset Di. A ranked feature list Mi =<RFi1, RFi2, RFi3, · · · , RFim> is

generated, where m=16 and RFij represents the jth feature in the ranked

feature list which come from the training dataset Di.

With these ranked feature lists, two different ways are introduced to produce

feature subsets groups. That is, for each feature selection algorithm, the

ranking results from different training datasets are considered together to

produce two feature subsets groups.

• The first way to create feature subsets group is called “FirstX”:

As we discussed before, with a feature selection method M , we can
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Algorithm 3 Pseudo code of FirstX

Input:
ranked feature lists RFL[][];
value of X;

Output:
features in FirstX[];

1: for i = 1 to 16 do
2: initiate each feature’s frequency frei=0;
3: end for
4: for j = 1 to 5 do
5: for k = 1 to X do
6: freRFL[j][k]+ = 1;
7: end for
8: end for
9: for l = 1 to 16 do

10: if freFl
≥ 0.8 ∗ 5 then

11: add Fl to FirstX[];
12: end if
13: end for
14: return FirstX[];

generate n ranked feature lists <M1,M2,M3, · · · ,Mn> correspond-

ing to training datasets <D1, D2, D3, · · · , Dn>. Algorithm 3 describes

FirstX. It picks up the first X (X belongs to 2 ∼ (m-1) ) features

from each ranked feature lists. If a feature appears more than 0.8n

times, this feature will be added into feature subset MFirstX (here M

can be of the feature selection algorithm and X can be a number be-

tween 2 and (m-1)). For each feature selection algorithm M , the result

of FirstX is a feature subsets group containing (m-2) feature subsets

(some feature subsets may be the same). We call this feature subsets

group MFirstX.
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• The second way to create feature subsets group is called CFB (Combi-

nation of Fuzzy and Brute-force):

In this method, we separate all the 16 features into three parts, namely

TOP, MIDDLE and BOTTOM. The features in TOP part are defi-

nitely added into feature subsets, because they are the more significant

for classification. And the features in BOTTOM part are discarded

and will not appear in the feature subsets. Each combination of the

features in the MIDDLE part is merged with the TOP features as a

feature subset. Here is how we generate the feature parts. For each Mi

in <M1,M2,M3, · · · ,Mn>, we draw one third of the features from the

top of Mi. If a feature appears more than 0.8n times, which means,

in most of the training datasets, this feature is important, then it is

added into the TOP part. In a similar way, we also take one third

features from the bottom of Mi. If a feature appears more than 0.8n

times, and it is added to the BOTTOM part which means that this

feature will not show up in feature subsets. The remaining features

are automatically added to the MIDDLE part. As a result of CFB, for

each feature selection algorithm M , there are 2t (t is the number of

features in MIDDLE part) feature subsets in the feature subsets group

(every feature subset is different). We name it MCFB.
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3.2.3 Classification techniques

Machine learning techniques are widely used in different research areas be-

cause of the outstanding performance they have. In our proposed approach,

we are going to use DT and SVM to detect P2P botnet traffic. If the clas-

sification models have different opinions on an instance, we make a decision

based on the possibility models corresponding to the classification model.

The feature vectors used in DT and SVM are the results of the feature se-

lection component.

• The final feature vector, which will be used for DT is as follows:

<F1, F3, F5, F6, F7, F8, F10, F11, F14, F15, Label>, this feature subset is

retrieved from the Waledac datasets, which will be discussed in detail

in Chapter 4.

• The final feature vector, which will be used for SVM is as follows:

<F2, F3, F4, F5, F7, F8, F9, F10, F11, F13, F15, F16, Label>, this feature sub-

set is retrieved from the Waledac datasets, which will be discussed in

detail in Chapter 4.

3.2.3.1 Decision tree

Figure 3.4 is a statistics survey given by Kdnuggets [35]. This survey shows

decision tree is the most used machine learning technique in the field of data

analysis. Moreover, decision tree and support vector machine are the two

most popular supervised machine learning techniques.
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Figure 3.4: Techniques used in data analysis

Decision tree is a powerful classication algorithm, which is very useful for

exploring data to gain insight into relationships among a large number of

training instances. Take ID3 (an implementation of decision tree) as an

example, by investigating a training dataset, the feature with the highest

information gain ratio is placed at the root of the decision tree. For every

possible value of this feature, a descendant node is created. The training
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instances are then grouped into several parts for each descendant node cor-

responding to the possible values of the root node. The process is repeated

to find the root node for each subtree using the grouped instances. This pro-

cess is processed recursively until all the instances in a node belong to the

same class. There are two types of nodes in a decision tree, namely leaf node

and non-leaf node. Each non-leaf node represents a feature and each leaf

node states a target value. To classify a test instance, a top-down process is

executed to test the instance according the features’ values. At the end, the

test process reaches a leaf node which indicates the target value of the test

instance.

In this case, DT is a tree-like model consisting of a set of rules for dividing

the dataset into two categories, namely P2P botnet and normal. Each leaf

node in the tree has a label, which indicates the class to which the instance

belongs.

3.2.3.2 Support vector machine

Support Vector Machine, an extremely useful algorithm based on statistical

learning theory, is a good choice for two classes discrimination. It performs

very well on high dimension datasets (the classifier only depends on the sup-

port vectors, which is a small part of the whole training space). The labelled

training dataset is split by an optimal hyperplane which maximizes the dis-

tance between support vectors. Here is the way that SVM can always find a

linear hyperplane. For a linearly separable problem, there is no difficulty in
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constructing a linear hyperplane. But if the problem is a non-linearly sepa-

rable problem, SVM cannot build a linear hyperplane based on the original

feature space directly. In a novel way, it first projects the low-dimensional

feature space to a high-dimensional feature space using a kernel function un-

til the original problem can be converted into a linearly separable problem.

Then, SVM can easily find a linear hyperplane. In other words, SVM projects

a problem to a linearly separable problem before constructs a hyperplane if

the original problem is non-linearly separable.

Figure 3.5 shows a simple example. Figure 3.5(a) is a non-linearly separable

problem in 2-dimensional space. But if we project the feature space into

3-dimensional space (Figure 3.5(b)) and do some rotation. Finally, a linearly

separable problem in 3-dimensional space is shown in Figure 3.5(c).

In our problem, the labelled training instances are separated into two parts.

Most instances of P2P botnet class are at one side of the hyperplane (SVM

allows some considered-error data are fallen on the wrong side), and the rest

of the instances remain at the other side, which stands for normal class.

3.2.4 Probability model

In our proposed P2P botnet detection approach, multiple classifiers are used

to classify the same instance, thus, different classifiers may have different

results. If this happens, we make the final decision with the help of possibil-

ities from the classifiers. Therefore, we need to build possibility models for

decision tree and support vector machine.
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(a) Non-linearly separable problem in 2D space

Figure 3.5: Problem description

(b) Linearly separable problem in 3D space

Figure 3.5: Problem description
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(c) Linearly separable problem in 3D space

Figure 3.5: Problem description

3.2.4.1 Decision tree

A smoothing method called M-Branch Smoothing is used to calculate the

probabilities for decision tree. It takes all the nodes in one path into account

to obtain the probability of a leaf node, because every node in the path make

some contribution to the final target value of an unseen instance [36].

Assume there is a leaf node l and the path from the root to a leaf l is

< V1, V2, ..., Vl >, where Vl is a leaf l and V1 is the root. nj
c is the number of

training instances belonging to class c at node Vj. The probability of a node

in the tree is represented in Equation 3.6:

pjc =
nj
c + m ∗ pj−1c∑

c∈C
nj
c + m

(3.6)
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From the equation we can see the probabilities of node Vj are based on

Vj−1. p0c is defined as 1/c. By computing the probability recursively, the

probabilities of leaf l are given by plc.

In this equation, m depends on the total number of the training dataset N

and the height of node Vj h. It can be calculated by the following equation:

m = M ∗

(
1 +

(
1− 1

h

)√
N

)
(3.7)

where M is a constant, Ferri et al. stated that the best experimental value

of M is 4 [36].

3.2.4.2 Support vector machine

For support vector machine, we make use of the distance from an instance to

the hyperplane to predict the probability of each classification. We believe

that the distance distribution of the training dataset can reveal the proba-

bilities. If most of the distances fall into a range, and the distance from an

unseen instance to the hyperplane also falls into this range, it is natural to

think that the classification result for this unseen instance has a relatively

high probability. On the other hand, if the distance of an unseen instance

is too large or too small, then the probability is relatively low. We applied

kernel density estimation (KDE) to the distances to estimate the distribu-

tion of the distances. As the distances derived from training dataset are not

continual, KDE helps to smooth the distance distribution.
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We evaluate the probabilities of results from SVM according to the distance

from an instance to the hyperplane. Depending on bayes’ rule, the probability

of SVM’s result is calculated as follows:

p
(
c|d(x)

)
=

fc
(
d(x)

)
∗ p(c)

f
(
d(x)

) (3.8)

where c is the label and d(x) represents the distance from point x to the

hyperplane. p(c) is the prior probability of class c. Function f is the density

estimate of the distribution of the distance to the hyperplane. We compute

it as follows [37]:

f(d(x)) =
1

nb

∑
xi∈C

K

(
d(x)− d(xi)

b

)
(3.9)

K is the kernel function used in KDE and b is the bandwidth.

3.2.5 Decision fusion

In our proposed detection approach, we use n different training datasets as

mentioned. Using the average performance can reduce the influence from

a specific dataset. After training the n different training datasets, we have

2n classifiers (n decision tree classifiers and n support vector machine classi-

fiers). It means, we will have 2n classification results for each test instance.

It is demonstrated in Chapter 4, both of these two kinds of machine learn-

ing techniques are good at classifying our conversation-based feature vector.
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Therefore, in most cases, the results from different classifiers are the same.

We can do nothing to these kinds of instances even the results are wrong.

What we can do to improve the accuracy is to make a better decision for

the remaining instances. If an instance is classified into different classes by

different classifiers, we perform our decision fusion algorithm. A target value

is assigned to the instance based on all the probabilities from the classifiers.

3.3 Concluding remarks

In this chapter we explained all the components of our proposed P2P bot-

net detection approach. Each component is described in detail including the

processes and the algorithms. The whole approach has three components,

which are, feature extraction component, feature selection component, and

detection component. The feature extraction component converts the traf-

fic into conversation-based feature vectors that represent the conversations.

By introducing different feature selection algorithms in the feature selection

component, some features are omitted from the feature vector. The final

feature vectors for DT and SVM are used in the detection component for

P2P botnet detection. The next chapter carries out experiments to evaluate

the proposed approach.
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Chapter 4

Experiments and Evaluation

Our proposed conversation-based P2P botnet detection approach is described

in detail in Chapter 3. This chapter contains the results of the experiments we

have carried out by implementing the components of the proposed approach.

Section 4.1 introduces all the open source libraries and tools we used in our

experiments; Section 4.2 lists the metrics we used for feature selection and

evaluating the detection approach; Section 4.3 describes the datasets we used

for training and test; Following that, the results of feature selection processes

are shown in Section 4.4; Finally, we evaluates our detection approach with

the experimental datasets in Section 4.5.

4.1 Tools

Table 4.1 shows the tools and libraries we have used in our experiments.
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Table 4.1: Tools

Name Description Version

WireShark A network protocol analyzer 1.6.2
Tcpreplay Replays pcap files onto the network 3.4.4

Jpcap A java library for capturing and sending network
packets

0.7

Weka A popular machine learning library 3.6
Libsvm An open source library for SVM 3.12

Tcpdump A command-line packet analyzer 4.2.1

4.2 Metrics

A good classifier should put as many instances as possible into the right class

and avoid classifying instances into the opposite class. In our evaluation, we

treated P2P botnet instances as positive instances and normal instances as

negative instances. We use some metrics to evaluate the experiments, namely

true positive rate (TPR), false positive rate (FPR), [TPR+(1-FPR)]/2, preci-

sion and accuracy. They are listed below. It is noteworthy that true negative

rate (TNR) and false negative rate (FNR) are not used as metrics in our ex-

periments. Because that a high TPR always with a low FNR and a high

TNR always with a low FPR. Equations 4.1 and 4.2 shows the relationship

between them.

TPR + FNR = 1 (4.1)

FPR + TNR = 1 (4.2)

In order to express the experiments’ results clearly, we choose TPR and FPR

instead of using all the four metrics.
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Table 4.2: Confusion matrix

Predicted class
normal P2P botnet

Actual class
normal

TN FP
(True Negative) (False Positive)

P2P botnet
FN TP

(False Negative) (True Positive)

A confusion matrix (See Table 4.2) can help us to understand the metrics

better. There are two classes in our problem: P2P botnet and normal.

True positive (TP) represents real bot instances correctly classified as bot

instances. False positive (FP) indicates real normal instances misclassified

as bot instances. True negative (TN) and False negative (FN) have similar

meanings.

The metrics we used in our experiments are listed below:

• TPR True positive rate, also called sensitivity or recall, finds the per-

centage of positive instances classified as positive by using the following

equation:

TPR =
TP

TP+FN

• FPR False positive rate shows the percentage of negative instances

misclassified as positive by using the following equation:

FPR =
FP

TN+FP

• Precision Precision gives the percentage of instances classified as posi-
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tive correctly by using the following equation:

Precision =
TP

TP+FP

• Accuracy Accuracy indicates the percentage of correct predictions of

all the instances by using the following equation:

Accuracy =
TP+TN

TP+FP+TN+FN

• [TPR+(1-FPR)]/2

This is a metric that combines TPR and FPR. In most cases, FPR

goes up as TPR decreases, and FPR decreases as TPR increases. With

this metric, we aim to find a compromise solution which has a good

result of [TPR+(1-FPR)]/2. [TPR+(1-FPR)]/2 has the same effect as

the Youden index, which is TPR-FPR. Actually, TPR+(1-FPR) equals

TPR+TNR, which makes more sense than the Youden index [38].

4.3 Datasets

In this stage, the experimental network traffic used for experiments are shown

in the following table (See Table 4.3). We will use these network traffic files

to evaluate our detection approach in the following sections.
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Table 4.3: Trace files

Name Capture from Size Type

Storm.pcap University of Victoia 40M P2P Botnet

Waledac.pcap University of Victoia 22.6M P2P Botnet

Bittorrent.pcap Virtual Machine 896M P2P Normal

Normal1.pcap Laptop 802M Normal

Normal2.pcap Laptop 981M Normal

Testbed.pcap Lab’s testbed 16G Normal

Victoria.pcap University of Victoia 245M Normal

The first column of the table is the name of the network traffic files. The

environment where the files are retrieved from is shown in the second column.

The third column describes the traffic data size for each traffic file. The last

column indicates whether the traffic is normal traffic or P2P botnet traffic.

The P2P botnet traffic files are derived from the University of Victoria called

Information Security and Object Technology (ISOT) dataset. ISOT dataset

contains both malicious traffic and non-malicious traffic. It merges sev-

eral traffic data from different places. The malicious traffic comes from the

French chapter of the honeynet project [39] involving two typical P2P bot-

nets: Storm and Waledac. On the other hand, the non-malicious background

traffic come from two different labs. One is the Traffic Lab at Ericsson Re-

search in Hungary [40], the other one is the Lawrence Berkeley National Lab

(LBNL) [41]. Tshark is used to separate the whole ISOT traffic into network

63



traffic files by using different filters. The file called Storm only contains the

traffic from Storm, and the other file called Waledac only includes the traffic

from Waledac. Furthermore, from the ISOT traffic, we obtained a part of

the non-malicious traffic to generate another file called Victoria, containing

only pure non-malicious network traffic. To sum up, from the ISOT dataset,

we extract three different traffic files: “Storm.pcap”, “Waledac.pcap” and

“Victoria.pcap”. In the remaining part of this chapter, the file extension will

be omitted when discussing the traffic files.

Moreover, besides the normal traffic from the ISOT dataset. We also col-

lected some different normal traffic trace files from different applications and

environments. The P2P normal traffic called Bittorrent was captured from

a virtual machine that had bittorrent (P2P downloading software) installed

on it. However, we could not make sure that non-P2P traffic is blocked even

when we used a tool called QQ computer management to limit the traffic

caused by other applications (some traffic is caused by the advertisements

which are built in bittorrent). Thus, there can be a chance that the trace

file Bittorrent contains a small part of non-P2P traffic. But, such traffic

should be non-malicious. We also captured two traffic files from our lab in

two days. The daily network traffic file “Normal1” and “Normal2 ” were

obtained from the network interface of my own PC, and the traffic includes

e-mails, web browsing, gaming, downloading, etc. These two traffic files are

considered as pure non-malicious traffic. Since the machines in our lab are

well protected by firewall, antivirus products and professional people. In
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addition, we also have a normal traffic file from ISCX’s testbed which is

declared non-malicious [42].

It should be noticed that all the traffic files described above are all pure

traffic, that is, each file contains only either normal traffic or P2P botnet

traffic. It is good for our experiments with the labelled data. As the ma-

chine techniques we applied in our proposed approach are supervised learning

techniques which need labelled data for training. If the datasets are not la-

belled, it is impossible to train the classifiers and to evaluate the classifiers

as well. However, the traffic files cannot be fed to DT or SVM directly, that

is, we need to convert the network traffic files listed in Table 4.3 into feature

vectors.

As Figure 4.1 shows, we connected two PCs with a cable. Machine A had

windows 7 installed, which was used to capture the raw traffic through the

network interface sent by machine B. Machine B installed Ubuntu to replay

all the traffic files listed above one by one with Tcpreplay. Tcpreplay can be

used to replay the traffic from the traffic file with the exactly same content

and speed when it was captured before. The feature extraction component

described in Section 3.2.1 installed on Machine A was used to convert the

captured raw traffic into conversation-based feature vectors. For each traffic

file, all feature vectors converted from this file were stored in a corresponding

file (having the same name as the traffic file, but with different file extension).

As all the traffic in the traffic files is pure, the instances were labelled while

extracting the features. That means, each feature vector was related to a la-
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Figure 4.1: Traffic replay

bel indicated the class the instance belonged to. In the training datasets, the

labels were used to build classification models, because DT and SVM both

are supervised machine-learning techniques which need labelled instances for

training. In the test datasets, the labels were used for evaluating the classi-

fication results. Finally, seven feature vector files with labels were generated

from the seven traffic files in Table 4.3.

After feature extraction, there was one file contained only Storm instances

called STORM and one file contained Waledac instances called WALEDAC.

And there were five files contained normal instances, we merged them into one

large file called NORMAL which consisted of normal instances generated by

different non-malicious traffic files. Finally, there are three files: NORMAL,

STORM and WALEDAC.

We randomly picked instances from the three files to construct training

datasets and test datasets. As our experiments wanted to prove that we can
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detect unknown P2P botnet. We not only used Waledac to detect Storm, but

also used Storm to detect Waledac. Tables 4.4 generated by pseudo code 4

show the 20 datasets used as unknown P2P botnet in order to test the classi-

fiers. The first column of each table indicates the names of the datasets used

in our experiments. Each dataset consisted of both normal instances and

P2P botnet instances. For instance, dataset “1WN test” consisted of both

P2P botnet instances from WALEDAC and normal instances from NOR-

MAL. It should be pointed out that there is no overlap between different

datasets. We deleted an instance as soon as it was put into one dataset, so

it cannot exist in some other datasets simultaneously. Therefore, after this

step, the three files: NORMAL, STORM, WALEDAC did not contain the

removed instances which were existed in the 20 datasets we created. In order

to express clearly, we named these three files: newNORMAL, newSTORM

and newWALEDAC after creating the 20 test datasets. These three files is

going be used to generate training datasets later.

4.3.1 Reasonable ratio between normal data and P2P

botnet data in training datasets

For a training dataset, the ratio between P2P botnet instances and normal

instances could influence the performance of a classifier, which built upon the

training dataset. Thus we had to find a reasonable ratio before we start fea-

ture selection and P2P botnet detection. With the data files we mentioned in
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Table 4.4: Test datasets

(a) Test datasets: Waledac & Normal

Dataset Waledac Normal Total

1WN test 493 1786 2279

2WN test 488 1771 2259

3WN test 498 1779 2277

4WN test 499 1794 2293

5WN test 492 1780 2272

6WN test 483 1780 2263

7WN test 494 1789 2283

8WN test 485 1789 2274

9WN test 492 1781 2273

10WN test 488 1783 2271

(b) Test datasets: Storm & Normal

DataSet Storm Normal Total

1SN test 573 1788 2361

2SN test 568 1777 2345

3SN test 569 1774 2343

4SN test 573 1786 2359

5SN test 564 1777 2341

6SN test 564 1780 2344

7SN test 564 1779 2343

8SN test 563 1782 2345

9SN test 567 1782 2349

10SN test 566 1784 2350
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Algorithm 4 Pseudo code of generating test datasets

Input:
normal dataset NORMAL;
p2p botnet dataset PPBOTNET ;
the normal data volume in each test dataset n;
the P2P botnet data volume in each test dataset b;

Output:
new normal dataset newNORMAL;
new P2P botnet dataset newPPBOTNET ;
test datasets BN test[];

1: for i = 1 to 10 do
2: while BN test[i] ≤ n KB do
3: randomly select instance I from NORMAL;
4: add I into BN test[i];
5: delete I from NORMAL;
6: end while
7: while BN test[i] ≤ (n + b) KB do
8: randomly select instance I from PPBOTNET ;
9: add I into BN test[i];

10: delete I from PPBOTNET ;
11: end while
12: end for
13: newNORMAL=NORMAL;
14: newPPBOTNET=PPBOTNET ;
15: return BN test[];

Section 4.3, namely newNORMAL, newSTORM and newWALEDAC, differ-

ent training dataset groups are generated. We applied different ratio to these

training dataset groups. The ratios between P2P botnet data and normal

data are 1:9; 2:8; 3:7; 4:6; 5:5; 6:4 and 7:3. We set the volume of P2P botnet

instances to a fixed size: 50 KB. Therefore, the volume of normal instances

are 450 KB, 200 KB, 117 KB, 75 KB, 50 KB, 35 KB, 22 KB corresponding

to the ratios. The test datasets we used in our experiments are listed in
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Table 4.5: Training datasets

(a) Training datasets contain 50 KB
Waledac instances & 50 KB Storm in-
stances

Name Waledac Normal Total

1WN 448 497 945

2WN 445 485 930

3WN 455 489 944

4WN 443 489 932

5WN 447 488 935

(b) Training datasets contain 50 KB
Storm instances & 50 KB Storm in-
stances

Name Storm Normal Total

1SN 439 559 998

2SN 448 553 1001

3SN 439 570 1009

4SN 436 572 1008

5SN 446 565 1011

Table 4.4.

4.3.1.1 50 KB:50 KB as an example

As an example, the training datasets we used contains the same number of

P2P botnet data and normal data. The training datasets list in Table 4.5

consist of instances from newNORMAL, newSTORM and newWALEDAC as

described in Section 4.3. The datasets in Table 4.5(a) were used to construct

decision tree classifiers, and then the test datasets in Table 4.4(b) were used

to test these decision tree classifiers in order to evaluate the performance

of the classifier derived from 50 KB P2P botnet data and 50 KB normal

data. The metrics we used in this evaluation is [TPR+(1-FPR)]/2. Since we

used every test dataset to test every decision tree classifier, finally, we had

50 results in this evaluation. The average value was used to represent the

performance of a decision tree classifier, which is 0.95418 (See Table 4.6).

Table 4.6 also shows another three results we obtained from training datasets
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Table 4.6: Performance of the datasets with 50 KB P2P botnet instances
and 50 KB normal instances

Training data Test data Method [TPR+(1-FPR)]/2

Table 4.5(b) Table 4.4(a) DT 0.93509
Table 4.5(b) Table 4.4(a) SVM 0.84374
Table 4.5(a) Table 4.4(b) DT 0.95418
Table 4.5(a) Table 4.4(b) SVM 0.88332

with 50 KB P2P botnet data and 50 KB normal data.

The same procedures were performed to all dataset groups with different ra-

tios between P2P botnet instances and normal instances. Figures 4.2 and 4.3

show the results (the two percentages (eg.10%90%) represent the data ratio

between P2P botnet data and normal data in a training file). Investigated

into the dash lines (fitting the data in to a line) in both figures, we may come

to a conclusion it is better to construct the training datasets with 30% P2P

botnet data and 70% normal data. On the other hand, the results derived

from DT classifiers are better than the corresponding results obtained from

SVM classifiers, especially when the P2P botnet data is much less than nor-

mal data or normal data is less then P2P botnet data. The data points at

the left of the fitting lines have relatively poor performance may caused by

the unbalanced training datasets. Meanwhile, the data points at the right

side of the fitting lines represents the performance of corresponding training

datasets. Their performances are also not good, the reason behind it may be

the training datasets do not have enough data to construct correct classifiers.

To sum up, the result would be applied to the subsequent experiments.
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Figure 4.2: Results of different data distribution (DT)

Figure 4.3: Results of different data distribution (SVM)
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4.4 Feature selection results

According the results from Section 4.3.1, we believe good results might be

achieved if the data distribution of the train datasets is 3: 7 (P2P botnet:

normal). Therefore, we generate the datasets shown in Table 4.7 to train

classifiers.

4.4.1 Waledac as a known p2p botnet

As mentioned before, we need to validate that our proposed approach is able

to detect unknown P2P botnets. Thus, in this scenario, we used Waledac as

a known P2P botnet and used Storm as an unknown P2P botnet, that is only

the datasets derived from Waledac (Table 4.7(a)) were used in the feature

selection process. However, the instances obtained from Storm should not

appear in this phase.

4.4.1.1 Feature selection for Decision Tree

We used information gain-based feature selection algorithm and information

gain ratio-based feature selection algorithm to select feature subsets for DT.

In this step, we used InfoGainAttributeEval and GainRatioAttributeEval

from WEKA (A collection of machine learning algorithms for data mining

tasks) which implemented the two algorithms. Figure 4.4 shows the detail of

the features’ information gain according to the table in Appendix A. The X-

axis represents the ith feature in the feature list 3.1 and the Y-axis indicates
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Table 4.7: Training datasets

(a) Training datasets contain 50K Waledac
instances and 117K Normal instances

Name Waledac Normal Total

1WN 490 1041 1531

2WN 491 1041 1532

3WN 488 1039 1527

4WN 489 1035 1524

5WN 478 1041 1519

6WN 496 1038 1534

7WN 482 1041 1523

8WN 487 1048 1535

9WN 490 1052 1542

10WN 495 1055 1550

(b) Training datasets contain 50K
Storm instances and 117K Normal in-
stances

Name Storm Normal Total

1SN 568 1045 1613

2SN 574 1043 1617

3SN 565 1049 1614

4SN 562 1055 1617

5SN 575 1033 1608

6SN 566 1036 1602

7SN 571 1046 1617

8SN 574 1040 1614

9SN 568 1040 1608

10SN 560 1040 1600

the information gain of each feature in each training dataset. Similarly,

Figure 4.5 gives the detailed information gain ratio for the features.

Figure 4.4: Information gain
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Table 4.8: Ranked feature list based on information gain

InfoGain

1WN 11 3 14 16 11 5 15 10 7 8 2 6 4 13 9 12
2WN 1 3 16 14 11 10 15 5 8 7 2 6 9 13 4 12
3WN 1 3 14 16 5 11 8 7 15 10 2 6 4 9 13 12
4WN 3 1 11 14 16 5 7 15 10 8 2 6 9 13 4 12
5WN 1 3 14 16 5 11 7 10 15 8 2 6 4 13 9 12

informative less informative
1 1: feature F1 in Table 3.1.

Figure 4.5: Information gain ratio

Based on the information gain and information gain ratio, tables 4.8 and 4.9)

show the ranked features lists after applying the algorithms to the five train-

ing datasets (1WN to 5WN). The first column shows the names of the

datasets used in feature selection procedure. Each row shows a ranked feature

list obtained from a dataset by applying a feature selection algorithm.

We can see from the tables, for the five datasets, the ranked feature lists

generated by InfoGainAttributeEval are very similar. The same can be said
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Table 4.9: Ranked feature list based on information gain ratio

GainRatio

1WN 31 6 5 8 7 1 16 14 11 15 10 2 4 13 9 12
2WN 3 5 6 8 14 1 7 16 11 15 10 2 4 13 9 12
3WN 3 6 5 7 1 8 14 16 11 10 15 2 4 13 9 12
4WN 3 5 6 7 1 8 14 16 11 10 15 2 12 9 13 4
5WN 3 5 6 8 7 1 14 16 11 15 10 2 9 13 4 12

informative less informative
1 3: feature F3 in Table 3.1.

for GainRatioAttributeEval. Moreover, for each dataset, the two ranked

feature lists from different algorithms have some similarity. It is clear that,

the last four features are the same in each ranked feature list. They are the

least informative features among all features.

Two groups of feature subsets were yielded from each group of ranked feature

lists, as discussed in Chapter 3. In this case, if a feature were to appear 4

or 5 times (we used 5 training datasets), it would be included in the feature

subset. Finally, we derived four groups of feature subsets called GainRa-

tioCFB, GainRatioFirstX, InfoGainCFB and InfoGainFirstX, respectively.

Both GainRatioFirstX and InfoGainFirstX contains 14 feature subsets (Can

be seen from Table 4.10 and Table 4.11). GainRatioCFB and InfoGainCFB

both had 128 (27) feature subsets. As outlined in Chapter 3, all features in

the TOP part are definitely used in the subsets, and the features in the BOT-

TOM part would not show up in the subsets. Hence, each combination of

the features in MIDDLE part yielded a subset with the TOP features. When

we compared GainRatioCFB with InfoGainCFB, we found that the features
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Table 4.10: FirstX features derived with information gain

InfoGain Feature Subset

First2 F1,F3

First3 F1,F3

First4 F1,F3,F14,F16

First5 F1,F3,F14,F16

First6 F1,F3,F5,F11,F14,F16

First7 F1,F3,F5,F11,F14,F16

First8 F1,F3,F5,F11,F14,F16

First9 F1,F3,F5,F7,F10,F11,F14,F15,F16

First10 F1,F3,F5,F7,F8,F10,F11,F14,F15,F16

First11 F1,F2,F3,F5,F7,F8,F10,F11,F14,F15,F16

First12 F1,F2,F3,F5,F6,F7,F8,F10,F11,F14,F15,F16

First13 F1,F2,F3,F5,F6,F7,F8,F10,F11,F14,F15,F16

First14 F1,F2,F3,F5,F6,F7,F8,F10,F11,F13,F14,F15,F16

First15 F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F13,F14,F15,F16

in BOTTOM parts were almost identical as evidenced by Table 4.12. This

similarity might be caused by the attribute ranking criterion used in these

two feature selection algorithms; the basic element in the attribute rank-

ing criterion is information entropy. And the intrinsic information used in

GainRatioAttributeEval brings the difference between these two algorithms.

Some evaluations should be performed to find a best feature subset from the

feature subsets we generated in previous processes. The SN test datasets

were still not used in this phase because we treated Storm as an unknown

P2P botnet. The feature subsets were thus evaluated only between the WN

datasets. The first five WN datasets were used for training and the rest of the

WN datasets were used for testing. To be more specific, dataset “6WN” was

used to test the classifier built by “1WN”, dataset “7WN” was used to test
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Table 4.11: FirstX features derived with information gain ratio

GainRatio Feature Subset

First2 F3

First3 F3,F5,F6

First4 F3,F5,F6

First5 F3,F5,F6,F7

First6 F1,F3,F5,F6,F7,F8

First7 F1,F3,F5,F6,F7,F8,F14

First8 F1,F3,F5,F6,F7,F8,F14,F16

First9 F1,F3,F5,F6,F7,F8,F11,F14,F16

First10 F1,F3,F5,F6,F7,F8,F11,F14,F16

First11 F1,F3,F5,F6,F7,F8,F10,F11,F14,F15,F16

First12 F1,F2,F3,F5,F6,F7,F8,F10,F11,F14,F15,F16

First13 F1,F2,F3,F5,F6,F7,F8,F10,F11,F14,F15,F16

First14 F1,F2,F3,F5,F6,F7,F8,F10,F11,F13,F14,F15,F16

First15 F1,F2,F3,F4,F5,F6,F7,F8,F9,F10,F11,F13,F14,F15,F16

Table 4.12: TOP & MIDDLE & BOTTOM parts with different feature
selection methods

Method TOP MIDDLE BOTTOM

InfoGain F1,F3,F14,F16 F2,F5,F7,F8,F10,F11,F15 F4,F6,F9,F12,F13

GainRatio F3,F5,F6,F7 F1,F8,F10,F11,F14,F15,F16 F2,F4,F9,F12,F13
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Table 4.13: Top five feature subsets for InfoGainFirstX group(DT)

InfoGainFirstX

[TPR+(1-FPR)]/2

Feature Subset
1WN 2WN 3WN 4WN 5WN

Average
6WN 7WN 8WN 9WN 10WN

11,2,3,5,6,7,8,10,11,14,15,16 0.9892 0.9877 0.9826 0.9935 0.9855 0.9877

1,2,3,5,6,7,8,10,11,13,14,15,16 0.9892 0.9877 0.9826 0.9935 0.9855 0.9877

1,2,3,4,5,6,7,8,9,10,11,13,14,15,16 0.9892 0.9877 0.9826 0.9935 0.9855 0.9877

1,2,3,5,7,8,10,11,14,15,16 0.9776 0.9877 0.9893 0.9935 0.9855 0.9867

1,3,5,7,8,10,11,14,15,16 0.9776 0.9877 0.9893 0.9935 0.9835 0.9863

1 1: feature F1 in Table 3.1.

the classifier built by “2WN”, and so on. This step was carried out to find

the top five feature subsets in each group. (Notice that the top five feature

subsets can be more than five feature subsets, because there can be some

feature subsets have the same [TPR+(1-FPR)]/2 value in the fifth place).

Table 4.13 shows the top five feature subsets in group InfoGainFirstX.

The results show that no matter which group, the results of the top five

feature subsets are very close. It is obvious that there are some common

features which cause the similarity among the results. Based on the evalu-

ation of feature subsets in each group, four final candidate feature subsets

were constructed by combining different groups’ results in Table 4.13 and the

tables in Appendix B.

DT FirstX is a candidate feature subset that derives from GainRatioFirstX

and InfoGainFirstX. Consider the top five feature subsets from these two

groups together. Let n be the total number of these feature subsets, and

if a feature were to appear more than n/2 times, then it was added into

79



Table 4.14: Four candidate feature subsets for DT

Feature Subset Name Feature Subset

DT FirstX F1, F2, F3, F5, F6, F7, F8, F10, F11, F14, F15, F16

DT CFB F1, F3, F5, F6, F7, F8, F11, F14

DT InfoGain F1, F2, F3, F5, F7, F8, F10, F11, F14, F15, F16

DT GainRatio F1, F3, F5, F6, F7, F8, F10, F11, F14, F15

DT FirstX. The other four final feature subsets were created in the same

way. DT CFB comes from GainRatioCFB and InfoGainCFB; DT GainRatio

comes from GainRatioFirstX and GainRatioCFB; DT InfoGain comes from

InfoGainFirstX and InfoGainCFB. The four candidate feature subsets are

shown in Table 4.14.

It is easy to find out that features F1,F3,F5,F7,F8,F11 and F14 are the common

features in every feature subsets. We can infer that these features play an

important role in training, and these features are the basic features which can

lead to a good result. Moreover, with the help of the remaining features, a

better performance can be achieved. We also noticed that features F4,F9,F12

and F13 does not appear in the four candidate feature subsets. The reason

is that, no matter which feature selection algorithm was used, these four

features are always in the BOTTOM part.

Among these feature subsets, the best one should be selected and used in de-

tection. The SN test datasets can be used to decide the best feature subset

from the four candidate feature subsets. For each candidate feature subset,

we used 1WN∼5WN datasets to build five classifiers and tested the clas-

sifiers with SN test datasets one by one. As we have 5 classifiers and 10
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Figure 4.6: DT feature subsets comparison (Waledac as known P2P botnet)

SN test datasets, each feature subset has 50 results, the average result was

calculated to avoid the bias. Therefore, the average results were used to eval-

uate the candidate feature subsets. A final feature subset which would be

used for the decision tree in the P2P botnet detection phase was determined

by comparing the results. The results are shown in Figure 4.6, which show

that DT GainRatio and DT CFB are the best feature subsets. On the other

hand, feature subset DT InfoGain has the worst performance. According to

the discussion in Chapter 3, this is not surprising since the decision tree we

used is J48 from WEKA. J48 is an implementation of C4.5 that uses infor-

mation gain ratio to build decision tree. That is why the features generated

by GainRatioAttributeEval are better than those generated by InfoGainAt-

tributeEval.

In conclusion, taking into account all the results shown in Figure 4.6 , we

maintain that the feature subset DT GainRatio (F1, F3, F5, F6, F7, F8, F10,
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Table 4.15: Four candidate feature subsets for SVM

Feature Subset Name Feature Subset

SVM FirstX F2, F3, F4, F5, F7, F8, F9, F10, F11, F13, F15, F16

SVM CFB F4, F5, F7, F9, F10, F11, F13, F15

SVM ReliefF F3, F4, F5, F7, F8, F9, F10, F11, F13, F15, F16

SVM SVM-RFE F2, F4, F5, F7, F9, F10, F11, F12, F13, F15

F11, F14, F15) and DT CFB( F1, F3, F5, F6, F7, F8, F11, F14) are the best

feature subsets to be used for decision tree in the next stage: decision fusion.

4.4.1.2 Feature selection for SVM

The feature selection processes for SVM are quite similar with DT. The differ-

ent parts are the feature selection algorithms. For SVM, we used ReliefFAt-

tributeEval in WEKA which is an implementation of ReliefF we described in

Section 3.2.2.2. A SVM-RFE algorithm was implemented in Matlab and was

used to perform SVM-RFE feature selection in our feature selection stage.

Table 4.15 shows the four candidate feature subsets for SVM. With the sim-

ilar procedure as decision tree did, we evaluated the four candidate feature

subsets and the results are shown in Figure 4.7.

In conclusion, considering all of the results above, by using all 16 features, the

experiments achieved the best results. But, we assert that the feature subset

SVMFirxtX (F2, F3, F4, F5, F7, F8, F9, F10, F11, F13, F15, F16) is the most suit-

able feature subset to be applied to SVM in the subsequent experiments if

time is token into account. The time comparison will be discussed in detail

in 4.5.1.
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Figure 4.7: SVM Feature Subsets Comparison (Waledac as known P2P
botnet)

4.4.2 Storm as a known P2P botnet

In Section 4.4.1, we treated Waledac as a known P2P botnet and used Storm

as an unknown P2P botnet to find the best way to obtained a appropriate

feature subset. The results shows that both DT GainRatio and DT CFB

give the best performance for DT; Whereas, SVM FirstX shows the best

performance for SVM.

With the same procedure in Section 4.4.1, we also did the experiments that

treat Storm as a known P2P botnet. The results in these experiments indi-

cated that the feature subset DT GainRatio is still the best feature subset,

however, DT CFB is not as good as DT GainRatio this time. SVM FirstX

also shows good performance. The results are shown in Figures 4.8 and 4.9

Taking everything into consideration, we can safely infer that the feature

subset DT GainRatio is suitable for DT and the feature subset SVM FirstX
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Figure 4.8: DT feature subsets comparison (Storm as a known P2P botnet)

Figure 4.9: SVM feature subsets comparison (Storm as a known P2P bot-
net)
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has the best performance for SVM. These two feature subsets were going to

be used in detection component.

4.5 Detection results

The feature selection for decision tree and support vector machine are given

in previous sections. In the detection phase, we used all the datasets listed in

Table 4.7(a) and Table 4.4(b) (Waledac is used as a known P2P botnet and

Storm used as an unknown P2P botnet). However, the instances should be

reconstructed according to the feature selection results. A filter was applied

before using the datasets, and all the unnecessary features were removed

from the original 16-dimensional feature instances. The reduced dimensional

feature vectors are represented below:

• Selected feature subset for decision tree:

<F1, F3, F5, F6, F7, F8, F10, F11, F14, F15, Label>

• Selected feature subset for support vector machine:

<F2, F3, F4, F5, F7, F8, F9, F10, F11, F13, F15, F16, Label>

4.5.1 Detection with DT and SVM

This section shows the P2P botnet detection experiments and results by using

decision tree and support vector machine individually. J48 from WEKA was

used as an implementation of decision tree. While libsvm was used as an
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Table 4.16: Detection results with individual technique

DT GainRatio DT All SVM FirstX SVM All

TPR 0.93764 0.93454 0.96510 0.96404
FPR 0.01191 0.01215 0.06210 0.06086

[TPR+(1-FPR)]/2 0.96286 0.96119 0.95150 0.95159
Precision 0.96316 0.96254 0.83234 0.83520
Accuracy 0.97591 0.97498 0.94448 0.94516

implementation of SVM. All classifiers were trained with 1WN∼5WN (in

Table 4.7(a)) with the corresponding feature subsets. On the other hand,

the test datasets 1SN test∼10SN test are listed in Table 4.4(b). For each

machine learning technique with specific features, there are 50 results. The

average value is used to represent the detection ability of a machine learning

technique with specific features. Table 4.16 gives the results. All the metrics

were evaluated. The lowest TPR is 93% and the worst FPR is 6%, meaning

both SVM and DT have good performance in detecting P2P botnet with

conversation-based feature vectors.

As all the experiments in this phase used the exactly same training datasets

and test datasets. The results in Table 4.16 are comparable. Decision tree ap-

plied to selected features is better than decision tree used all 16-dimensional

features in terms of all the metrics. However, SVM had a different situa-

tion, TPR had an improvement by using selected features and the FPR was

slightly higher than using 16-dimensional features. However, SVM with se-

lected features and SVM with all 16 features had a equivalent performance.

When we compared DT and SVM, it shows that decision tree is better than

86



SVM in terms of all the metrics except TPR.

Also, we carried out experiments to compare the training time and test time.

These experiments were conducted in a Windows 7 machine with 3.00 GB

RAM and 2.66 GHz processor. We not only considered the training time, but

also took the test time into account. Training time refer to the total time of

training 5 training datasets (1WN∼5WN), test time refer to the total time of

using 5 classifiers to test 10 test datasets (1SN test∼10SN test). We ran the

experiments 15 times and the average time was calculated for evaluation. J48

and libsvm were used as the implementations of decision tree and support

vector machine, respectively.

Figure 4.10 offers the experimental results. The comparison of training time

is shown in Figure 4.10(a) (Appendix C.1 shows the details). For decision

tree, the training time with selected features is 0.422 second. However, if we

trained 5 training datasets with all 16 features; it takes 0.822 second which

was almost twice of the training time with selected features. The training

time of SVM also reduced after omitting some less informative features. But,

it does not save so much time as decision tree. This may caused by the

different mechanisms of constructing classifiers and the different number of

features. As we know, SVM is much complicated than DT. But, we noticed

that there was no big difference between the training time of DT and SVM.

The reason is that, when we train a DT classifier, all the training instances are

needed. However, SVM only needs a small portion of the training instances

which called support vectors.
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(a) Training time comparison

Figure 4.10: Time comparison

(b) Test time comparison

Figure 4.10: Time comparison

Figure 4.10(b) gives the results of test time when use different techniques
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with different features (Appendix C.2 shows the details). Both DT and SVM

saved time when selected features were used. The time different between DT

and SVM is significant huge. The test time DT used was almost 0.015 second

for testing, while SVM uses more than 2 seconds. According the discussions

in Chapter 3, decision tree classifies an instance only according a set of rules.

But SVM needs to assert the instance belongs to which side. Thus, regarding

to test, DT is much simpler than SVM. That’s why SVM needs more time

to test an instance than DT does.

Consider the training time, test time, and the performance, we believe we

made a right decision to use feature subset DT GainRatio for decision tree.

And use the selected feature subset SVM FirstX for SVM, because it can

save time while the performance is slightly worse than SVM All which is

acceptable.

4.5.2 Decision fusion

The previous experiments give good results by using decision tree and SVM

with conversation-based feature vectors. The true positive rate of decision

tree are above 93%, and the false positive rates of decision are extremely

low. Similarly, SVM’s true positive rates are over 96%, and its highest false

positive rates are about 6%. According to these results, we believe that our

conversation-based P2P botnet detection can work well by applying decision

tree and SVM.

However, there is always space for improvement. The mechanisms that de-
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cision tree and SVM used to build classifiers are totally different. Therefore,

combining the results from decision trees and SVM may improve the per-

formance of detection. We use 10 classifiers (according to the 5 training

datasets, we have 5 DT classifiers and 5 SVM classifiers) in a fusion function

to make use of the results from both DT and SVM in order to make a better

decision.

For most of the test instances, different classifiers can assign them with the

right target value. It is evidenced by Figures 4.11 and 4.12, the training

datasets are 1WN∼5WN and the test dataset consists of 200 normal instance

from 1SN test and 200 bot instances from 1SN test.

Figure 4.11 shows the classification results of the 400 test instances with 5

SVM classifiers. The Y-axis represents the distance between an instance to

the hyperplane of a SVM classifier. The first 200 test instances are normal

instances, thus the distances should be greater than 0; If the distance of a

normal instance is less than zero, then it is a misclassification. Comparing

the results of the 5 SVM classifiers, most of the results are correct and similar.

From another perspective, the hyperplanes of these 5 classifiers are close to

each other. Meanwhile, Figure 4.12 proves that 5 DT classifier also have

similar results when classifying the 400 test instances.
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Figure 4.11: SVM classification results
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Figure 4.12: Decision tree classification results

However, there still exist a small amount of test instances, that different clas-

sifiers have different opinions on them. If we enlarge an area of Figure 4.11,

we can see in Figure 4.13 that three of five SVM classifiers classified instance
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#289 into normal class and two of them considered this instance as a bot

instance. To overcome this kind of situation, the probabilities are used to

help to make a final decision. The probabilities represent the confidences for

each decision, and we choose the class, which has the highest probability as

the final decision. Algorithm 5 shows the algorithm used for decision fusion

based on 10 classifiers (5 decision tree classifiers and 5 SVM classifiers) and

the probabilities we described in Chapter 3.
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Figure 4.13: SVM classification results
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Algorithm 5 Pseudo code of Decision Fusion

Input:
the training datasets Di;
a test instance Ti;

Output:
the target value of the test instance c;

1: for i = 1 to n do
2: build classifiers DTi and SVMi;
3: end for
4: initialize B = 0 to represent the number of the classifiers classify Ti as a

botnet instance;
5: initialize N = 0 to represent the number of the classifiers classify Ti as a

normal instance;
6: for traverse all classifiers do
7: if classify Ti as botnet then
8: B++;
9: else

10: N++;
11: end if
12: end for
13: if B-N ≥ x then
14: c = botnet;
15: else if N -B ≥ x then
16: c = normal;
17: else
18: pb =sum of the probabilities from the classifiers that classify Ti as a

botnet instance;
19: pn =sum of the probabilities from the classifiers that classify Ti as a

normal instance;
20: if pb/B ≥ pn/N then
21: c = botnet;
22: else
23: c = normal;
24: end if
25: end if
26: return c;
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4.5.3 Comparison

As we discussed in P2P botnet detection component, the detection perfor-

mance is improved by feature selection firstly; Then decision fusion based on

probabilities is applied to make the detection component perform better.

Figure 4.14 shows that the results for all the metrics discussed in Section 4.2.

Generally speaking, we have a good detection result. The TPR results are

basically over 92% and the FPR results are all lower than 8%. Moreover,

[TPR-(1-FPR)]/2 results, precision results and accuracy results are all good.

Although SVM almost had the highest TPR, from the perspective of accu-

racy, Figure 4.14(e) shows that SVM’s accuracy is not as good as DT and

Fusion (stand for the results after fusion algorithm). It is reasonable, because

there are more normal instances than botnet instances in the test datasets

and the FPR results of SVM are worse than DT and Fusion. Based on the

results, this thesis come to a conclusion that conversation-based P2P botnet

detection have a good performance.

Considering all the metrics, the performance of decision tree is improved by

using selected feature subset. Although the improvement is not that signif-

icant, the time complexity is reduced. However, for SVM, the improvement

only can be seen from TPR results. Thus, we can infer that all 16 features

can contribute to the performance of SVM. But we still believe that the

feature selection processes are needed. Because that the time complexity is

decreased by using selected feature subset. In Section 4.5.2, we combines

the results from different classifiers. Comparing the result after fusion with

96



individual machine learning technique, the TPR results of fusion are a little

worse than SVM. But fusion has a outstanding performance regarding to the

other four metrics. To sum up, taking all the metrics used in our experi-

ments into account, the thesis concludes that our feature selection processes

can reduce the time complexity without negative influence on the detection

performance. Moreover, our decision fusion model can improve the perfor-

mance by combining decision tree and support vector machine.

(a) True positive rate comparison

Figure 4.14: Metrics comparison (Waledac as a known P2P botnet)
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(b) False positive rate comparison

Figure 4.14: Metrics comparison (Waledac as a known P2P botnet)

(c) ((TPR+(1-FPR))/2 comparison

Figure 4.14: Metrics comparison (Waledac as a known P2P botnet)
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(d) Precision comparison

Figure 4.14: Metrics comparison (Waledac as a known P2P botnet)

(e) Accuracy comparison

Figure 4.14: Metrics comparison (Waledac as a known P2P botnet)
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4.5.4 Concluding remarks

This chapter conducted the experiments to evaluate the proposed approached

we described in Chapter 3. Feature selection component and P2P botnet

detection component were implemented and evaluated. The results were

compared and it was concluded that our conversation-based P2P botnet de-

tection approach has a good performance and better results are achieved by

using decision fusion. The next chapter concludes the thesis and gives sev-

eral possible points that can be made to improve or extend this work in the

future.
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Chapter 5

Conclusions and Future work

Chapter 1 has introduced network security and our contributions in this the-

sis. In Chapter 2, related background information are provided and previous

related research are discussed. The proposed P2P botnet detection approach

is presented in detail in Chapter 3. Evaluation of our proposed approach

is given in Chapter 4. In this chapter, some conclusions of this thesis are

presented and several possible future work is suggested.

5.1 Conclusion

Since the advent of the Internet, network security has always been a major

concern of the Internet users. Currently, botnets are the most serious chal-

lenges in this field in recent years. The detection approach proposed in this

thesis deals with the most dangerous botnet: P2P botnet. Our detection ap-
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proach is based on the features that extracted from 30-second conversations

between two IPs. These features are simply derived from the headers of the

packets, thus, our detection approach can be used to detect encrypted traffic

as well. The feature selection methods are used to remove the less informa-

tive features which may influence the results. The results shown in Chapter 4

reveals that, DT has better results with the selected features. Although the

results of SVM are a little worse, the time complexity is reduced because it

uses fewer features than the original feature vector. It is a trade off between

time and classification performance. To sum up, both DT and SVM have

desirable performance. The true positive rates are all above 92% and the

false positive rates are all lower than 8%. Therefore, we have every reason

to believe that our conversation-based P2P botnet detection approach works

well with DT and SVM.

In order to improve the detection performance, a fusion process is proposed

to use the probabilities based on the classifier models. To be more specific,

for decision tree, the probability model is created according to the structure

of DT. On the other hand, the probability model for SVM is based on the

hyperplane and the probability is derived depending on the distance from an

instance to the hyperplane. The experiments demonstrated that the decision

fusion process can indeed improve the performance of the classifiers.
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5.2 Future work

There are several points that can be made to improve or extend this work in

the future:

1. Introduce more machine learning techniques

We applied two machine learning techniques in our work. There are

still many novel machine learning techniques that can be used to detect

P2P botnets. For example, näıve bayes, random forest and so on. If

more machine learning techniques are introduced to our decision fusion

process, better results may be achieved, because the machine learning

techniques are based on different theories.

2. Use different feature selection algorithms

Although the feature selection algorithms we used in our thesis can

help us to reduce the dimension of the feature vectors without greatly

decreasing the performance. Some other feature selection algorithms

can be proposed in the future in order to obtain a better feature subset.

3. Find more informative features

Based on P2P conversations and review of the literature, we originally

created 16 features. It is possible to find more informative conversation-

based features by deeply analyzing the traffic generated by P2P bot-

nets. These features may be helpful for improving the performance one

step further.
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4. Update the classifiers when detecting in real time

New P2P botnet emerge from time to time. It is necessary to retrain

the classifiers in order to be able to detect new P2P botnets.
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Appendix A

Information gain and

information gain ratio

A.1 Information gain values of five training

datasets

Table A.1: Information gain values of five training datasets

Information Gain

Feature 1WN 2WN 3WN 4WN 5WN

F1 0.726 0.746 0.744 0.723 0.748

F2 0.373 0.379 0.373 0.366 0.387

F3 0.701 0.714 0.711 0.734 0.719

F4 0.31 0.302 0.327 0.32 0.317
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F5 0.554 0.541 0.564 0.572 0.561

F6 0.322 0.324 0.327 0.346 0.325

F7 0.486 0.456 0.482 0.507 0.501

F8 0.467 0.497 0.487 0.498 0.442

F9 0.294 0.308 0.293 0.32 0.235

F10 0.496 0.557 0.455 0.504 0.478

F11 0.557 0.564 0.534 0.649 0.553

F12 0.177 0.186 0.176 0.194 0.172

F13 0.294 0.308 0.293 0.32 0.235

F14 0.638 0.589 0.628 0.628 0.635

F15 0.496 0.557 0.455 0.504 0.478

F16 0.625 0.625 0.587 0.622 0.606

A.2 Information gain ratio values of five train-

ing datasets

Table A.2: Information gain ratio values of five training datasets

Information Gain Ratio

Feature 1WN 2WN 3WN 4WN 5WN
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F1 0.247 0.248 0.2476 0.253 0.254

F2 0.146 0.149 0.142 0.170 0.151

F3 0.381 0.373 0.387 0.402 0.390

F4 0.106 0.105 0.112 0.110 0.109

F5 0.318 0.341 0.277 0.370 0.378

F6 0.327 0.331 0.331 0.350 0.330

F7 0.266 0.246 0.256 0.273 0.264

F8 0.286 0.300 0.242 0.253 0.271

F9 0.095 0.102 0.110 0.111 0.150

F10 0.170 0.162 0.176 0.179 0.163

F11 0.192 0.192 0.183 0.210 0.199

F12 0.080 0.083 0.079 0.131 0.077

F13 0.095 0.102 0.110 0.111 0.150

F14 0.229 0.252 0.232 0.233 0.227

F15 0.170 0.162 0.176 0.179 0.162

F16 0.230 0.214 0.227 0.233 0.225

115



Appendix B

Top five feature subsets for

each group (DT)

B.1 Top five feature subsets for InfoGainCFB

group (DT)

Table B.1: Top five feature subsets for InfoGainCFB group(DT)

InfoGainCFB

[TPR+(1-FPR)]/2

Feature Subset
1WN 2WN 3WN 4WN 5WN

Average
6WN 7WN 8WN 9WN 10WN

1,2,3,8,14,16 0.996 0.992 0.988 0.998 0.985 0.992

1,3,8,10,11,14,16 0.995 0.992 0.990 0.998 0.984 0.992
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1,3,8,11,14,15,16 0.995 0.992 0.990 0.998 0.984 0.992

1,3,8,11,14,16 0.996 0.992 0.989 0.998 0.984 0.992

1,3,8,10,11,14,15,16 0.995 0.992 0.990 0.998 0.982 0.991

B.2 Top five feature subsets for GainRatioFirstX

group (DT)

Table B.2: Top five feature subsets for GainRatioFirstX group(DT)

GainRatioFirstX

[TPR+(1-FPR)]/2

Feature Subset
1WN 2WN 3WN 4WN 5WN

Average
6WN 7WN 8WN 9WN 10WN

1 ,2,3,5,6,7,8,10,11,14,15,16 0.989 0.988 0.983 0.994 0.986 0.988

1,2,3,5,6,7,8,10,11,13,14,15,16 0.989 0.988 0.983 0.994 0.986 0.988

1,2,3,4,5,6,7,8,9,10,11,13,14,15,16 0.989 0.988 0.983 0.994 0.986 0.988

1,3,5,6,7,8,14 0.989 0.988 0.983 0.994 0.986 0.987

1,3,5,6,7,8,10,11,14,15,16 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,11,14,16 0.989 0.988 0.983 0.994 0.985 0.987

1,3,5,6,7,8 0.989 0.988 0.983 0.994 0.984 0.987
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B.3 Top five feature subsets for GainRati-

oCFB group (DT)

Table B.3: Top five feature subsets for GainRatioCFB group(DT)

GainRatioCFB

[TPR+(1-FPR)]/2

Feature Subset
1WN 2WN 3WN 4WN 5WN

Average
6WN 7WN 8WN 9WN 10WN

1,3,5,6,7,8,11 0.989 0.988 0.983 0.994 0.985 0.988

1,3,5,6,7,8,11,16 0.989 0.988 0.983 0.994 0.985 0.988

1,3,5,6,7,8,14,15 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,15 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,14 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,11,14,16 0.989 0.988 0.9826 0.994 0.984 0.987

1,3,5,6,7,8,10,11,14,15 0.989 0.988 0.9826 0.994 0.984 0.987

1,3,5,6,7,8,10,11,15,16 0.989 0.988 0.9826 0.994 0.984 0.987
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1,3,5,6,7,8,10,11,14,15,16 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,11,14,15,16 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,11,14,16 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,11,14,15 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,11,15,16 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,11,16 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,11,15 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,11,14 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,14,15 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,15 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,14 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,10,11 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,11,15 0.989 0.988 0.983 0.994 0.984 0.987

1,3,5,6,7,8,11,14 0.989 0.988 0.983 0.994 0.984 0.987
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Appendix C

Training time and test time

C.1 Training time

Table C.1: Training time comparison

Experiment
DT SVM

DT GainRatio DT All SVM FirstX SVM All

1 0.423 0.816 0.73511 0.98653

2 0.434 0.814 0.64431 0.78639

3 0.418 0.826 0.65485 0.74222

4 0.417 0.820 0.639 0.752

5 0.418 0.828 0.628 0.759

6 0.425 0.814 0.645 0.790

7 0.427 0.805 0.636 0.746
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8 0.424 0.859 0.696 0.780

9 0.424 0.918 0.697 0.786

10 0.419 0.810 0.636 0.718

11 0.417 0.804 0.650 0.728

12 0.412 0.804 0.635 0.729

13 0.422 0.806 0.648 0.727

14 0.419 0.810 0.633 0.732

15 0.430 0.801 0.688 0.736

Average 0.422 0.822 0.658 0.767

C.2 Test time

Table C.2: Test time comparison

Experiment
DT SVM

DT GainRatio DT All SVM FirstX SVM All

1 0.013 0.015 2.36500 2.72222

2 0.013 0.013 2.38850 2.79110

3 0.013 0.014 2.418 2.828

4 0.013 0.013 2.443 2.907

5 0.013 0.013 2.469 3.057

6 0.013 0.014 2.464 2.915

7 0.014 0.017 2.468 2.943
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8 0.013 0.013 2.483 2.805

9 0.014 0.015 2.495 2.989

10 0.015 0.013 2.569 2.989

11 0.014 0.018 2.513 3.040

12 0.013 0.013 2.550 3.035

13 0.014 0.013 2.559 3.026

14 0.013 0.013 2.574 3.128

15 0.014 0.014 2.555 3.015

Average 0.014 0.014 2.488 2.946
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