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Abstract

With limited conservation resources is becoming mchmore important to
target conservation efforts on the locations and features that provide the greatest
impact on a species or group of spexiOne underused method to dois applying
the mathematical framework afocial network analysis (SNA) to generaetworks of
interaction between a species aiitd habitats. To test the applicability of this methdd,
used SNA to generate an interaeiuetwork of chimney swiftGhaetura pelagica
roost sites. Using SNA and a WilcoRmatt signedrank test, | quantfied the
importance of eachoostsite to the structure and stability of the networkalsotested
for the influence of weather variables the structure of the roost network using
logistic regressionMy results identifieda largescale roost networkhiroughout
southern Nova Scotjavith three roostghat had significant influence over the
connectivityof the network.l also identified atrespheric pressuras havingnfluence
overdegree and closeness centrality, two measures ofdtenectivity of the roost
network, andwind speed over closeness centralifhese results show that SNA is a
valuable tool that can identify key sites for tetgd conservation effortsl also show
that changing weather patterns could result in modifioats of the roost network as

movement between roost sites is influenced by pressure and sjreskd
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Chapter I: General Introduction

Qurrent widespread declines in biodiversity are believedesult mainlyfrom
anthropogenic factorssuch as climate change, loss of habitat tméuman
encroachment, and overexploitation of both wildlife atie environment (Ceballost
al. 2017). Specgeextinction is occurring across a wide range of guilds at a rate 100
times greater than thassumedt 6 I O1 INR dzy R¢ SE (i &t@lQd1X)2y NI G S
major loss of biodiversity is occurring amdwigds, with 44% of all avian species
experiencing poplation declines since the 197addrth American Bird Conservation
Initiative 2019). Of all avian guilds, aerial insectivores are experiencingrbatest
population declines, having decreased38)oon averag over the same time span
(NABCI 209). This deline is theorized to be due to a change in insect availability
(Nebelet al. 2010, Nocerat al. 2012, Pomfreet al. 2014, Stantonet al. 2017)
landscape changes (Paquettal. 2013, Cristaldet al. 2017, and habitat loss
(Robillardet al. 2013, Zaohettaet al. 2014).

Thoughmanyaerial insectivores are experiencing population declines, chimney
swifts Chaetura pelagick K S NB | F)are bidpeaiiendng thel giettest decline
among this guild (Nebet al. 2010, Michekt al. 2016).Swifts are a threatened species
of migratorybird that breeds in eastern North America and overwinters in the Amazon
basin in South Americ€ OSEWIC 20L&8nce the 1970s swifts have experienced a
95% population decline aass their North American breeding rang@dSEWIC 20),8

and a rangewide population decline o4.9% per yearCOSEWIC 201L&ome aspects
1



of swift ecology have received scientific attentisach as loss of nesting habitat
(Fitzgeralcet al. 2014, Michekt al. 2016) and changes in prey availability (Noasral.
2012, Pomfrekt al. 2014). Most studies obkwiftsand theirecologyhave focused on
breeding and migratory behawio, while theiruse of communal roostisas received
comparatively littlescientfic study.These roosts can impact swift survival, and
scientific attention is required as these roosts becasoarcer

Historically, ommunal roosts for swifts were hollow trees @tceptiaally large
diameter (McLaughlin 1926, Steewtsal. 2014, Zanaétita et al. 2014).Suchnatural
roosting sites have become very rare in therth Americarlandscapeas trees that
YSSi GKS NBIdZANBYSyia 2F agAT dommdchliBed Ay ONB |
forests (Thompsoet al. 2013) First noticed in the 1% century, svifts acopted
traditional masonrystyle chimneys for roostingnd nestingGraves 2004). For a
period, both natural roosting habitat and masonry chimneys were readily available to
swifts, and theirchoice ofusng chimneysnstead of treesluring this period suggests
that chimneys offer greater or at least similar benefit to their natural counterpart
(Steeveset al. 2014).

Today, a heatingand ventilationmethods changeapidly, traditional masonry
chimneys are falling into disuse (Doyle 2088) new chimneys areonstructedof
non-masonry materialshat swifts cannot useOf thosemasonry chimneythat still
exist, metal liners began to bestalledin the 1960s (Pritchard 1998gaving them

unsuitable for swift use as the liner does not pide a porous surface for gripping.



New masonry chimneys are rarely constructed, being replaced instead by steel
structures (Pritchard 1996)-urther, communal roosts are typicalbnly in vey large
chimneyge.g.,those found on hospitals, schoo&dindustrial buildingswhich have
never beerabundantand are now even less s@/ith few natural roosting sites
avalable to accommodate this reduction in mamade roosting sites, swifts are fag
a serious threat of habitat loss.

Gonservation efforts are @eded to protect the roost sites that rematiue to
their declining availabilityMajor issues that arise when athpting to conserve these
structures are the high costs associated with mamtag or repairing roost chimneys
and the regulatory issue thahese structures are often found on private land. The
ability to identify whichroost sites are most important wdd be valuable in focusing
conservation efforts. It is particularly importattt understand how swift roosts are
linkedin space and timdt has been assumed that swifts show a high degree of roost
site fidelity because they show nest site fide(Bexta 1962, 1978 but this has never
been tested. If swifts do not show roostesiidelity but move between roosts, this
could have important imlications for the management and preservation of roost
structures.Consideringurrentclimate change predictionst is also important to
identify the influence ofveathervariables on thesénksand predict how swifts might
respond If temperature, preipitation, and storm occurrence are all expected to

increase Yasseur and Catto 200Ravenscrofet al. 2010, Tituset al.2013) any



association between roost ussdthese variables coulonpact management
decisions.

Swift roostsmaybe linked into adrge network, with individuals moving between
sites throughouthe migration and breeding seassrCountsof swifts at roostare
conducted acrosthed g A FG1aQ NI y3S { K NRBodzahknRnazérs daf K S
birds using a roost cdiuctuate continuoust throughout this period. It is not known if
fluctuations in roost countare due to individuals continugmtheir migration, moving
between roosts locally, do a yet unknowrfactor. | soughtto determine whether
chimney swift roostsrelinked in a wayHhat allows identification of key roost sites and
whetherthere are external factors that could influencéése links given climate
changepredictions | used movement data to constructreetwork of these key
landscape features, and weather data to predioiv this network would respontb
changes in weather patterndhis would allow ut® not only identify ke sites for
targetedconservation but also to predict which sites would be most imgatrinthe
future.

To determine how swift roosts were linkeldjsed grapktheory based social
network analysis (Pavlopoules al. 2011), which is typically used to ey social
networks within groups. One of the primary uses of social network asgI$dA) is to
investigate networks involving human interactgsuch as political affiliations (Yaat
al. 2012), advertising (Kemp al. 2003, Browret al. 2007), friendships (Eaghe al.

2009),andother exchangs (Reagans and Zuckerman 2001, T8@22Lusheet al.

&

[@p))



2010, Isbaet al. 2017). Ecological studiesing SNA have largely focused on
understanding social interactions among members of a soaaipgespeciallyin
primates (McCowaeet al. 2008, Kasper and Voelkl 2009, Suetual. 2011). Theise of
SNA in an ecological context that considers physicatdtatiructures as the focal
aspect (node) of the networ&rerare but SNAhasbeen used testudy bat roosts
(Rhode=t al. 2006, Fortunat al. 2009, Johnsoat al. 2012) and habitat patch
networks (Baranyet al. 2011, Rubio and Saura 2012). No studieddte have
attempted to use SNA to evaluate a network of key habitat features for any bird
species orto evaluate the influence of weather variables such anetwork.

To address the limit&ins of the current literature both regarding swift roost
networks and the influence of weather variables on network connectiwity primary
goals wereto (1) investigate whether roosts formed a largeale interactive network
that was used by multiplevgfts during the breeding season an@) investigate how
weather variables influenced movement within this roost network. To achieve tHese,
evaluated the reearchhypothesedhat roosts form a largescale interactive network,
and movement between roostdll increase under weather variables that precede
inclement wather. | hypothesizedhat relatively lower atmospheric pressure and
temperature as well as higher humiditwill be positively associated with increased
movement of chimney swifts betweenasts throughout the breeding seasowhile

increased wind speewill be negatively asociated.



Low atmospheric pressumnd high humidityareindicative of inclement weather
in the form of increased storm activity, rain, and higher wit@sancet al. 20@),
whichrepresents poor foraging conditions for swifts. | teiare predicted thatswifts
would showa positive association betweanovementand low pressureand
movement and high humiditygs they increase foraging in preparation for these poorer
condtions. By increasing lorgjstance movements between roosts dugiperiods of
low pressureand high humidity swifts would increase energy intake through increased
foraging and be less likely to encounter an energetic deficit due to poor foraging
conditiors.

| alsopredicteda positive association betweanovementamongroost sitesand
cooler temperatures Swiftswould needto consume more prey under lower
temperatures tomaintain body temperatures within their thermoneutral zone (TNZ)
(Lack and Lack 1951ack and Owen 1955, Elkins 2pIihe TNZfor swiftswas
suggeted to be 25¢ 39 °C(Ramsey 1970), and for species with similar life history
strategiestiaverages 2¢ 37 °C (Table-1). The further below this TNZ ambient
temperatures are, the more eneygwifts require for thermoregulation and therefore
are expectedo consume morerey items Prinzinger and Siedle 1988therefore
predictedswiftsto forage further, thus showing greater movemesgtween rooststo
increase energetic intake during treeperiods Finally, | predicted thatigherwind
speedswill be negatively assoated with movement between roosting siteshe

energetic costs of flight are increased under highd speedsnd the availability of



aerial insects is lowdElkins 201)) soswifts are likely to minimize longistance flights
under theseenergetically egensive conditions.

To assesmy researchhypothesis): (i) usedSNAto construct anetwork of swift
roosts and identify keyoostsfor targeted conservation efforts andi) tested if swift
movementswithin thisnetwork respone@dto weather variabless| predicted.In the
first data chaptei(Chapterll), | determinedwhether the patterns of swift movement
among roosts could be described as a network whose properties qoalatify the
importance of an individual roost to the overalltmsrk structure.l then evaluated the
influence ofenvironmental weather variablagcorded by Environment Canada
(temperature, humidity, pressure, dew point, and wind speed and directiorthen
degree of movement between roost to sed dould predict @iture changes in network
structure giverpredicted changes in weather patterns duediamatechange(Chapter
[). Finally I summarize and synthesize the combined results of the two dataptehs
and supply explicit management recommendatigGhaptenV).

My results will be important in addressing a large gap in the current knowledge
of chimney swift biology by providing a method to investigate swift roettvorks. By
viewing roosts as a amplex interactive network, and including any weather variables
that influence these networksye can better manage and conserve these rare

landscapdeatures.
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Tables

Tablel-1: Thermal neutral zones (TNZ) for species related to the chimney swift

(Chaetura pelagm), all ofthe order Apodiformesaveraging as 27 37 °C
TNZ (°C’ Reference

Speaes

Glossy swiftlet

Collocalia esculenta
Uniform swift

Collocalia vanikorensis
Common swift
Apusapus

Alpine swift

Apus melba
Silverrumped spinetail
Rhaphidura leucopygialis
White-throated swift,
Aeronatues saxatalis
Chimney swift

Chaetura pelgica
White-throated needletail
Hirundapus caudacutus

32-34

30-34

26-38

28-38

24-38

27-38

2539

29-38

McNab and Bonaccorso 1995
McNab and Bonaccorso 1995
Kokimies 1948, Kendeigh 1977
Bize 2007

Shipleyet al. 2015
Bartholanewet al. 1957
Ramsey 1970

Pettigrew and Wilson 1985
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Chapter Il: Useof socialnetwork analysis for targeted conservation of

chimneyswift (Chaetura pelagicaroost sites

Abstract

Severabiodiversity-centeredmetrics exist to quantify the importance of
landscape and habitat features for conservation effoewever, forspecies whose
habitat useis not quantified bythesemetrics such as those in urban arease need a
method to best identifyfeaturesfor targeted conservation effortsd investigatel the
use of social networknalysis (SNA) to identify and quantifiesecritical habitat
features | used SNA to identify network exgéstce in chimney swifGhaetura pelagica
roost usagegquantify theimportance of eachoostsite, and evaluate the impact tiie
loss ofkeysites.l identified a network consisting den chimney swift roostin
southernNova Scotia, Canada, ahudther isolated three key (most connectedjoost
sites.| evaluated the dict oflossof thesekeysiteson the network by using a
WilcoxonPratt signedrank testand by analyzing the structure of the subsequent
network. | found that connections between roostsid the structure of the network
were significantly #iected by theloss ofthese key sitesMyresults show thaSNA is a
valuable tool that can identify key sites for targeted conservation efforts for species

who may not be included in conservation effofocusedourelyon biodiversity.
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Introduction

Habitat loss is grimary driver of species population declines (Schmiegelow and
Monkkdnen 2002, Stuast al. 2004, Brown and Paxton 2009), andnyconservation
efforts are focused on the identificationgstoration, and protection of important
habitatsor landscape featres to combat the impacts of these losses. Despite these
efforts, landscapes continue thangeand important wildlife habitats continue to be
lost. Not only has space become a limitingd 1 2 NJ F2NJ a2YS aLISO0ASaQ
resources fo efforts to congrve the habitats that remain are also limited. To use these
resources effectively, it is imperative to know which locations or features are most
importantfor Y Ay G+ Ay Ay 3 énkIShdRaipddeh daigbelseentiniatempts
to conserve areas basedn the number of endemic species (Myetsal. 2000, Leet
al. 2003, Davist al. 2008), total species diversity (Scetgal. 2016), rankings of
biodiversity (Sarkaet al. 2006), and hakats associated with species with high
likelihoodof persisting (Wliams and Araujo 2000, Yirkaal 2018).Social network
analysis is an emerging method to identify key sites for a single species baggd on
importance in maintaining connectivity amgm network of landscape features
network analgis approach caprovide guidance fothe conservation of sites for
specieghat may not be included in biodiversi#fpcused metrics.

Network analysis is a developing analytical technique used to definewanatify
G Y S I y Afgaflifesiafthe context olandscape or hahit features that form

interactive networksThe ability of each feature to maintain connectivity of the larger
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network, or to connect remote areasre examples of quantifying meaningfusse
Given this] sought to test the hypothesis #t social networkanalysis can be used to
identify key features within a network of landscape features for targeted conservation
of a single species at risk: the chimney sviihdetura pelagiceclassifiechs
threatened in Canada (COSEWIC80

Sociahetwork analysi¢SNA) allows the investigation of social structures based
on the mathematical concept of graph theory (Pavlopowbal. 2011). These graphs
are composed of individuals or features of irgst (nodes) and connection or
movement between tem (links). Usin@NA, it is possible to identify which nodes are
important for maintainingmovement withinthe network (centrality), and the degree
to which each node is connected to all others (hode dey primary assumption of
SNA is that theumberof connectiongo a nodeindicates itamportance to the
network. SNA can also identify which nodes are most important for maintaining
movement between these communities (betweenness)d whichsubsets 6 nodes
are more linked to each other than tither nodes in the nevork (communites). The
ability to identify communities within a network could have management implications.
A wellconnected community may not benefit by the addition of a new roost stmec
as much as a small or weakly connectethowinity.

SNA is ofta used to study human interactions, including in advertising (Kestpe
al. 2003, Browret al. 2007), determining friendships (Eagkeal. 2009), corporate and

business structure (ReagansdaZuckerman 2001, Tsai 2002), and politisabaiations
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(Yanget al. 2012). Use of SNA in ecological research has been steadily increasing and
has beerapplied tohow animals interact with others within their group (McCowetn
al. 2008, Kasper and Voe®009, Sueuet al. 2011). These studies temal categorize
individuals as the nodes or focal points of the graphs, and associations between
individuals as the links.

Few ecological studies have examined how features of the environment act as
nodes. The se of roosts as nodes by bats has been evelliasing SNA in ternos
spatial distribution of roost trees (Rhodesal. 2006, Johnsoat al. 2012), influence of
resources on network structure (Chaverri 2010), and how nodes impact the spread of
disease (6rtunaet al. 2009). Other studies have considd habitat patcheso be
nodes in a network and used SNA to evaluate connectivity between these patches
(Baranyiet al. 2011, Rubio and Saura 2Q012alderet al.2015. Abenéefit to this
approach versusenly traditional mappings the ability toevaluatethe impact of node
loss onthe network (Calderet al. 2015, Mourieret al.2017).

| useda social network analysaf the movement of radidagged chimney swifts
betweenroost sitesto (a) investigate whetheroosts formed a largscale network that
wasused by multiple swi$ during the breeding seasofl) identify the most
significantroost chimneg within the network, and tq (c) predict the outcome of the
loss of one of thenostsignificant rooss. | hypdhesized that the roost chimney with
the greatest number of conneicins would be the most significant, and that its loss

would reduce connections and community structure of remaining chimneys within the
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network. This informatiorcouldbe used to gule congrvation efforts by providing a
quantified ranking othe ecologicdimportance of each feature within the network.
chose chimney swifts (hereafter: swifts) as a model species because they are highly
aerialand, as a result, theyphysically interat primarily with their roosts (nodesgnd
nest sites, and no other landsge features. In this way, roost chimneys act as islands
and provide a unique and simplified network to téisé applicability of SNA in this
environment

Roost sites are fundameritéor swift ecology offering protection from
predation, providing more sble microclimates, and protection from the elements
(Steevest al.2014).Roost sites are especially important in poor weath@oviding a
protected space for groups of swifts test, ®nserve heat (COSEWIC 2018), and
reduce water loss (Farquhat al. 2018) duringsuboptimalforaging conditions
associated with poor weatheNot only do swifts use these structures throughout the
energetically expensive migrations, but also throaghthe breeding season (Steeves
et al.2017, COSEWIC 201#)en they areused by norbreeders failed breedersand
the nonrincubatingmemberof a successfly breeding pai({COSEWIC 2018hese
roostsare rare across the landscape because they are typicaljg lmasonry
chimneys, structurew/hich arebecoming obsolete. Thimakes them important
features for conservation effort®y using SNA to determine their connectivity and
quantify their significace to the overall network, a targeted conservation approach

couldbe considered foroost site preservation.
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Methods

Study Speies

Chimney swiftprovided a model system for evaluating the applicability of SNA
in this context. Swifts are small aerial ingearesthat breed in eastern North America
and overwinterin the Amazon basin. They are experienanasticpopulationdeclnes
of -4.9% per year since 19TCOSEWIC 20)8vhichis hypothesized to bdue toa
complex combination of factors that inclu@eoss of nesting and roosting habitats
(Fitzgeralcet al. 2014). The likelihood that the loss of these important sites iditea
to widespread population declines highlights the importance of finding a way to
identify which sites should be the focus @inservation effortslt has been assumed
that swifts show aiigh degree of roossite fidelity, butthis has not been explidyt
tested andmay not be the case. If swifts do change roost sitéhkin the breeding
seasonthen these sites could form anteractive network across the landscape and

allow the use of SBA for identifying key sites of conservation value.

Site Selection

| captured and tagged 53 swifts at ti@aledoniaoost in Kempt County, Nova
Scotia, Canada (44.4181%65.0546°W) throughauwune of 2018 and 2019. This roost
is of moderate size (1.24n5 m tall), hosting up to 700 swifts during migration, and ca.
250throughoutthe breeding season (Bird Studies Canantgublished data). This

masonry chimney is attached to a vacant buildingt served as a blacksmith
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workshopin the 1930sto 1960s. Tk chimney has a partial metal cap with a 0.5 m
diameter circular opning in thecenter. | selected his site for tagging of swifts due to
its accessible height that allowed for rapid removalhe trapping device described

below.

Trapping

Throughout Jua 2018 (n = 20) and 2019 (n = 33), swifts were captured using a
modified hoop net (Colvin and Hegdal 1986, Wheeler 2@h2)er Animal Use Protocol
#18103 (University of New Brunswickhis degn consisted of a 55 cm diameter
circular frame from which a th long cylinder made from mist net material (38 mm
mesh), taperedo a diameter of 15 cm was suspended. The mist net was weighted at
the bottom to prevent tangling (Figui21). The net was spended in the chimney
with the circular frame held in place layl0 cm rim protruding from the chimney
opening.

| lowered the ne into the chimney 30 minutes prior to dusk, before swifts
began to enter the roosfThe net wasemoved immediately upon eng ofno more
thanfive birds intothe chimney captured birdsvere extractedrom the net,and
placed in cotton drawstring bird kags to be processed one at a time. Capture and
transmitter attachment took place for two consecutive nights each week (n wedk)
until all available tags were deployed. By staggeringlsggoyment,l aimed to reduce

disturbance at the roost and mininazhe risk of swifts abandoning the sit€he
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staggered deployment also provided a wider date range of data due to limited tag

battery life (see below).

Transmitter Attachment

| processedirds on the ground, 20 m away from the roosting structure
Handling time was kept below five minutes per individoalce removed from the bird
bag, and less than thirty minutes after captuwifts were fitted with Lotek Wireless
nanotags model NTQB3-2, weighing 0.62 g. These tags measured 19.6 cm
(approximately 1 cnof tag, and 18.6 cm antenna), were programmed with a burst
interval of 13 secondsnd had an estimated battery lifespan of ca. 224 day2018
these tags were programmed witimique frequencies for detection with hariald
Lotek receivers (SRX800) anndled for the Motus Wildlife Network (Motus; Tayler
al. 2017)in 2019.Swifts were released from the hand 50 m from the roost chimney

after processing to reduce disturbancedther swifts that had entered the chimney

during processingrhey respondedtb releaseby flying several circles in the area before

entering the roost chimney.
Lotek Wireless nanotaggere attached using a modified figuBharness as
described by Rappokend Tipton(1991), Doerr and Doerr (2002), and Haramis and

Kearns (2000) (Figei 2-2). Due to the high energetic demand swifts face, it was

important that the nanotags not remain attached to the swifts indefinitely. To prevent

this, harnesses were constried using 6 mm absorbable surgical suture (Vicryl PGA

suture, Ethicon, USB;1 chose this diameter to prevent chafing of the individuals
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(Doerr and Doerr 2002, Woolnoughal. 2004). When exposed to the environment,

the absorbable suture is expected tissolveafter ca. three months (Doerr and Doerr
2002) and relieve the swétof the extra energetic burden of the transmitter. In

addition to using absorbable surgical suture, another modification to the Rappole and
Tipton (1991) harness design was thpte-congructed the harness with adjustable

leg loops, which reduced hanagj time and provided a secure and customized fit to
each bird (Doerr and Doerr 2002, Strediyal. 2015), decreasing the likelihood of the

harness slipping off due to the shomd posterialy positioned thighs of the swifts.

Movement Data

From June; August 2018 | recorded swifts at roost sites usingnandheld
Lotek SRX800 radielemetryreceiver with a four element Yagi antenndravelled
between known roost®nceswifts had enteredoosts after dusk, scanning at each
location for all tagged indivighls. | alternatedcanning the western and eastern shores
of Nova ScotiaFor the western shore, | proceededuthwesterlyfrom Wolfville to
Weymouth beforeprogressingnland to Caledomi. Along this route, | scanned at each
known swift roost site (Fige 2-3). The eastern sharroute consisted of travelling
northeasterlyfrom Yarmouthto Bridgewater, where there were no known swifiosts.
| scanned along a 1 km grid after dusk in towlmng this route.

This method proved laborious and yielded detectionsalong the eastern
shorg sol used thefixed antennas of théotus Wildlife Network(hereafter: Motus)n

2019.Motusis a sgtem of automated telemetry receivers that record thedtion of
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tagged individuals within range (ca. 4 km) in {imeute intervals (Tayloet al. 2017).
EachMotus tower uses the same single scanning frequency (166.380 MHz), increasing
detectability conpared to an approach of cycling through frequencies Qrastl al.
2017).1 registeredmy nanotags withMotus, and upon deteting a signal the nanotag
informationwascompared to the registration, and raw data were made availaide
an online serve(motus.org)

There wereeightknown and activelwmney swiftroost sites within southern
Nova Scotiatudy site(A. Manthorne urpubl. data) and 27 active Motus towers
(motus.org) Of thesepne (Wolfville) waswithin rangeof aMotus tower, with the
remainingroosts < 12 km from active Motus towe(fsigure2-3). Ore roost site
(Weymouth) was < 10 km from two Motus toweasd < 2Gkm from another so data
from thesethree Motus towers were pooled.assumed that each Motus tower

represened data on thenearestroost for the other seven.

Analyses

[ filtered detectiondata to includeonlythe province of Nova Scotia, Canada. Run
lengh is the number of consecutive detections of a single tag byptus tower, and
shortrun€ Sy 3G Ka 66X o0 | NB O2 yeid ROFg)B®RIuded £ &S LJ2 3
these detections, awell as all detections outsidend 8:00¢ 10:0Ch time window, to
limit the possibility of detecting birdfat were not roosting in the area but merely
foraging. Detections afterl September 2019 were excluded from all analysessthese

were more likely ® represent migration movements
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| used the igraph package in R4€8 and Nepusz, 2006; R Core Team, 2017) with
h = 0.05 to determine the significance ofportant roosts on the structure of the roost
network. Taggingall swiftsfor this studyat one site (Caledoniafouldoverrepresent
the importanceof this roostto the network To minimize this riskynly birdsthat left
and then returned to Caledonia weoensidered a link for the roosT &ble 21).

| identified communities within the networky grouping roosts that shared more
connections with each other than they did Wwithe rest of tle network (Radicclet al.
2004).1 thenuseddegee andcloseness centrality to quantify the importanceezfch
individualroost to the networkDegree centrality is thenost basic representation of
the importance of a node to a network.i$ a local mesure, meaning it only considers
the node in quesbn, and is theaumber of links aodehas, represented as a
proportion of the greatest number of links within the network (Equatieh)2
Closeness centrality iee simplestcentrality measure that consides movement
betweennodes(Bavelas 1950)t represents the minimum number of steps between
the node in question and all other nodésquation2-2). This distance is related to the
generated graph, and not a physical distanaed is alsoapresented as groportion
of the greatest closeness value

Equation 21: Degree centrality
0QQI Q T

where v=node in question, n=number lofks j =node with the greatest number of

links
27



Equation 22: Closeness centrality

68 ¢ 1 QIOI §to p,Q

x EAQAOQEIAET E i1 @i AIA@®O AARRDO x @A T AAO
0 T 1T ENOAOBERI T ABOAA
If a tagged swift had multiple detections at one rdbese were poled into a
single detection to reduce the likeblod of pseudoreplicatiorifter determining the
degree anctloseness centralitgf eachroost, | removedthosewith the greatest values
and used a WilcoxeRratt signeerank test to determie the significane of theirloss
over the networkl generatednetwork graphgo visualize the influence of roost

removal on the structure of the overall network.

Results

Atotal of 1122detections of21 tagged swiftswere recorded &er data were
filteredtoexcludefad S L2 aA G A @S a 6 Natia/2018% snd limiteilo XX o> / N
evening and morning (1®0 ¢ 10h00). | detected tagged birds at a total oRMotus
towers throughoutsouthernNova Scotiavithin the evening and morning time
restriction (Figure 24). Twoof these towers were 10 kmand one was < 20 kot a
single roost (Weymouth) and seere pooledto representdata from that roost. Three
Motus towers along the eastern shore detected tagged swifte wo known roosts
nearby. Thessites were included in the network as potential roosts. Finally, there

weretwo Motus towers > 25 km fromrgy knownroostsalong the watern shore.
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These detections wergrimarily between 1h0@ 05h00 (Marshalltown) and 2@ ¢
08h00 (Upper Clementdgpdicating the tagged swifts (eight total) were in the area
overnight. As such, these sites were also retained as unknown roostreiselsing in

10 total roosts included in the network analydisgure 25). Of the 2L birds that wee
detected,five (24%) used a single roosiye (24%) used twonine (43%) used threg
and two (10%) used fouposts.In total, 76% of tagged swifts did not show roost site
fidelity, using more than one ost throughout the breeding season.

All centralty measures identified Caledonia as the most important roost site
(Table 22), despite removing all initial detections at the site from analyses (Tab)e 2
Degree catrality found Upper Clementsind Bridgetown to be the second drthird
most important roosts, whileloseness centralitidentified Upper Clementand
Marshalltown Based on these resultandividuallyremoved the Caledonja
Bridgetown Marshalltown, ad Upper Clementsoosts from the network and
recalculated the cetrality measures to determine if the network was significantly
altered.

Different centrality measures showed varying influence of roost removal from
the network (Table 23). Upper Clements and Bridgetown were both found to
signiicantly alter the network to the same extebhased on closeness centrality (z =
2.668, p = 0.008aledonia was only significant wheansidering degree centrality (z

=-2.668 p = 0.008)Neither centrality measure showed Marshalltown as having
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significant influence if removedso network graphs were not constructed without
Marshalltown

When plotting the networkand community structurewith all sites(Figure2-6:
A), without CaledoniaRigure2-6: B), Upper ClementgFigure2-6: Q, or Bridgetown
(Figure2-6: D), we can observe both the communities and the netkatructure
without theseroosts There is minimal difference between the full network and that
without the Bridgetown roost. However, without the Caledonia or Upper Clements
roosts the networkbecamesimple Community structure within each network is@ls
altered, resulting in aisolated roost site withouUpper Clements and Bridgetown.
Bridgetown wastie only rmstwhoseloss does not diminish the total number of

communities.

Discussion

My results show that SNA can be used to determine the existendesatent of
networks of important ecological featurelly study is the first to trackhe movement
of individud swiftsbetweenand amongoosts throughout tie breedingperiod. By
using SNA adid, not only could show that there igoost switching bywifts, but that
the extent of movement forms a complex netwarker a largelandscapel foundthat
76% of swils used more than one roost site throughout the breeding seagdnch
has never been documentedihis indicates the importance of managing rnsoss a
network, as many swifts move between roosts over a large spatial S¢adegh this

could havebeen show using mapping alone, SNA provides a quantifiable measure of
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the relative importance of each roost to maintaining connectivity within the nekwo
This new insight into the ecology of chimney swifts could have management
implications in terms o speciesecovery plan for this species at rigkese results
show that SNA caprovideinsightof how features are connected, the complexity of
systens, and how to focus conservation and management efforts.

Social network analysisould be a valuable tool for étifying and conserving
important roost sites for chimney swifts. This is crucial from a conservation
perspective, due to the limiting nature coosting chimneys currently available across
the landscape and the high risktbeir loss due to human disus@/ith limited natural
roosting sites available in the form of large hollow tregsd a preference for chimneys
(Graves 2004, Steevesal. 2014), the conservation afthimneyss key to the
persistence of this species dwy fulfil a vital ecological gairement for swifts by
providing an area to rest (Steevesal. 2014), conserve energy (Du Plessis and
Williams 1994, Lubbet al. 2018), andeceiveprotection from the environment
(Walsberg 1986, Combrirdt al. 2017). SIA is rarely used in relation gpecies at risk
(WebberandVander Wal 2019), anahy work highlights the applicability of SNA in this
context.

When considering the spatial ptisn of each roost and their division into
communities (Figur@-5), the imporaince of the Caledonia siteclear. Caledonia is the
only known roosting site in the interior of the southern portion of Nova Scotia and

likely provides an important stepversite for swifts moving between the eastern and
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western shores. The return ofdividuals to the Caledonia rooafter moving to the
western shore could also be indicative of habitat quality, as the site is surrounded by
protected areas (including KejimikkiNational Park), forests, wetlands, and lakes. This
habitat may provide higheguality or a greater abundana#d prey items tlan coastal
sites,which have been found to havel@aver abundance of aeriahsects(Russell and
Wilson 2001). This could indteathe importance of natural areas for the species while
foraging.

At a broaderscale, these results show theg@licability of SNA for
understandingsocial interactionsvith key ecological features. These resaltsoshow
promise for use in the identifation of key roosting sites for socially roosting bats and
birds and can be apigld to a wider range of specieBheability to quantify the
importance of individualeatures and examine thiafluence of removabn the
theoreticalnetwork structure opesthe possibility of targeted conservation planning
from the scale of a single kegost site to the larger scalef @ habitat patch in a
fragmented landscape

Many complex network structurebkely exist in natue and using SNA to
evaluate their interactionsextent, andeffect ofloss could bealuablein future
conservation efforts. With advances in technology tabw for greater collection of
movement data, SNA in the context of this study can provide a uniquesefd|
method of evaluating and undemding species interaction with important landscape

features. SNA will be important as further advances proviler-scale data.
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The most significarltmitation in this studyis that all swifts were tagged at a
single roost, theCaledonissite. If swiftsdid show roost fidelity, this would biake
resultsby increasing the relative importance tife Caledoniaoos. To minimize this
risk,only birdsthat left and then returned to Caledonia were considered a link for the
roost (Table 21). Each season used a differemtethod of detection(handheld vs
automated), with each m#od having its own bias. With hadteld telemetry it is
difficult to locate individuals as mobile as swifts, resulting in fewer overall detections,
though interpretations of detections are more intuitive and straightforward. With the
use of automated temetry towers,| gained a greater number of location points but
waslimited by the tower locations. As such, there are some known roost sites that had
poor or no coverage, while many detections were in areas with no known roosting
sites. This last poirmay indicate the presence of an unknown roost site in these
locations and should be investigatealternately these detections may represent swifts
foragingin the area and not actually using the rookattempted to account for this
possibility by limitingletections to the evening and early morning when swifts are
typically found near their roosto further this line of research, automated telemetry
towersshoud be placed at each site of interest to increase detection, though this adds
bias to known sits.

Future researctshouldinclude the ability of SNA to identify roost networks in
other areas and should also aim to monitor more individuals over severed y@a

determine the true extentind variabilityof this network. This study highlights the use
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of SNA for identifying netarks and movement between nodes, but the mechanisms

driving these movements are currently unknown.
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Table 22: Centrality measures of the chimney swith@aetura pelagicaroost network
in southern Mva Scotia. All loops have been removed, and the total sample is 1122

detections of 21 tagged tals throughout June September 208 and 2019.

Roost Degree Closenes:
Blandford 0.18 0.056
Bridgetown 0.73 0.059
Caledonia 1 0.077
Jordan Bay 0.09 0.04
Liverpool 0.09 0.042
Marshalltown 0.45 0.063
Middleton 0.36 0.04
Upper

Clements 0.82 0.063
Weymouth 0.36 0.059
Wolfville 0.27 0.059
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Figure2-1: Modified hoop nef(left; Wheeler 2012)ised to capture chimney swifts
(Chaetura pelgica) for the deployment of radio tagat the Caledonia roost (right)
coded for theMotus (Tayloret al.2017)network.

Transmitter
Antenna

Adjusted
placement

Traditional
placement

Figure2-2: Modified figure8 leg loop harnss originally described by Rappole and
Tipton (1991), Haramis drKearns (2000and Doerr and Doerr (2002pnstructed out

of 0.5 mm absorbable suture.
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Chapter IlI: Influence of weather variables on degref movementof

chimney swiftswithin an interactiveroost network

Abstract

Climate change mapduce changes for wildlife such imsrease energetic
costs associated with satfiaintenance, foraging, ahmovement, with specialist
species being at the gatest risk.| examinedthe influence of weather variables on the
connectivity of aoost network of a specialist species with high energetic demands, the
chimney swift Chaetura pelagi). | constructed darge-scale network consisting of
chimney swift rost sites throughousouthernNova Scotia, Canada, and used radio
telemetry to track movements between these sites during #2048 and2019 breeding
seasom. Using logistic regressiolfound atmospherigressureto have a significant
impact on two measurg of network connectivity, degree and closeness centrdlity
also found wind speed to have a significant effect on closeness centhlitsesults
suggest that chimney swift roost tveork structures wil be alteredunder current
climate change predictian If both stormfrequencyand severityincrease, swifts will
be forced toincrease foraging effort and distances to prepare for greater periods of
poor foraging conditions. This woulahpact the roost nevork in southern Nova
Scotiajncreasing movementdiween roosts in low pressure in preparation of

incoming poor weather conditions.
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Introduction

Climate change could have grave consequences on the energetic balance of
wildlife speciesClimate change is predicted to increase the global mean temperature
(Mannet al. 1998, Easterlingt al. 2000, Rooet al. 2003), cause greater fluctuations in
temperature (Neuwald and Valenzuela 2011, McMichael 2012) and rainfall (Singh
1997), and incrase the occurrence of severe weather phenomena (Eastegtiag
2000,Leckebusclet al. 2008, Fielet al. 2012). Many of these predicted changes are
associated wittan increase in energetic costs to wildlife, such as costs associated with
thermoregulaton (Huet al. 2017), food availability and the associated foraging costs
(Murphy 1987, Sergio 2003), and the availability of suitable habitats (Parmesan 2006,
Jacksoret al. 2015). Should these energetic costs increase, many species may not be
able to adjst to these greater demands.

A key element of understanding how climatiects wildlife energetics is to
determine the influence of weather variables on habitat sélen and the movement
of animals between habitats. For example, temperature can inflaerdval dates of
many migrant bird species on their breeding groundaslgkeviciugt al. 2006,

Chambers 2010, DeLeenal. 2011), potentially causing a mismatchtween arrival
and habitat availability. Rainfall has also been linked to habitat seteatid duration
of stay (Puigcervest al. 1999), and changes in atmosploepressure linked to
increased levels of activity and foraging movements (ldeel. 2011, Beuneret al.

2013). If there are limited habitats to choose among, individuals mayroeddo
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reduce their energetic reserves to accommodate the use of thigseed habitats,
therefore reducing their overall fithess (Tomlinseinal. 2014).

Specialisspeciesare particularlysubject to reduced fithess from increased
energetic demands assiated with changes in climate (Blatal. 2013). One specialist
spedes that may be highly susceptible to climate change is the chimney Skidiefura
pelagicg. Chimney swifts (hereafter: swifts) are small aerial insectivores and are
experiencinglrastic population declinesvithin North AmericaQOSEWIC 2018teeves
et al. 2014, Mdrth AmericanBird Conservationinitiative 2019). Swifts ability to rest,
and therely conserve energy, is limited by the availability of suitable resting locations
due to their morphology, which does not allow them to stand or perh such, sifts
are likely to be undegreatenergetic pressureThey spend the entire day in flight
foraging and only cease flight to rest while nesting or roosting communally at night or
duringpoor weather (Steevest al. 2014). Both nesting and roosting typicailycur in
masonry chimneys, which offer both a posowertical surface to grip onto and
protection from the external environmenCQOSEWIC 20,18teevest al. 2014). Roost
sites are egecially important for swifts as they provide shelter and a restingepfac
hundreds to thousands of swifts in a singleusture during their energetically
expensive migration between North and South America. Unfortunately, these
structures are limitedacross the landscape and are becoming rarer as this type of

structure isbecoming obsoleteGOSEWIC 2018
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| previously determined that swift roosts fora a network across large spatial
scalesused my multiple birds throughout the breeding seagGhapte I1).1 then
sought to determine how these roost networks might be edté given climate change
predictionsby determining if any weathewariableshad influence over movement
between roosts withirthe network and if this would alter the structure of theetwork
To accomplish thig,evaluated the predictiorthat relativelylower atmospheric
pressure and tempeature, as well as higher humidityould be positively associated
with increased movement of chimney swifts between roosts throughout the breeding
season, while increased wind speed will be negatively associgbeedct these
relationships duetothe it dzSy OS 2F 4SIF G KSNJ LJ G4G§SNYya
The availability of aerial insects is decreased under relatively low pressure {(Pakje
high winds (Freeman 1945, Lack and Lack 1951), and high huamdifyrecipitation
(Lack and Lack 195Lack and Owen 1955)o assess the extent of alteration of the
roost network, | used degree and closeness centrality derived from social network
analysis in Chapter II.

Based on the resulting modelsjs possiblgo predict howthe connectivity of
the network of swift roosts will react to projected changes in environmental factors.
This could have profound implications on the management and@wmation of
important swift roosting habitat, construction of artifi¢ciebosting towers, as well as
provideinsight into how climate change could impact other interactive networks

composed of key habitat features.
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Methods

Study Site

The network of swifroostidentified and studied in the previous chaptirough
network analysis provides an ideal opportunity assess how environmental changes
induced by climate change could impact laggale interactive networks. The southern
portion of Nova Scotiarpvides a largely isolated landscape (surrounded by the
Atlantic Oceann three cardinal directions) in whidb evaluate the impact of weather
variables on landscaggcale networksSimilarly, the predominant physical interaction
between swifts and the ladscape occurs with their roosting sites. These two factors
combined mak the use of swift roosting networks in Nova Scotia an ideal condition to

evaluate the influence of weather gatrns on network connectivity.

Capture and Tagging

Throughout June d2018 and2019,l trapped and tagge@0 and33 swifts
respectivelyat the Caledoniaoost in Nova Scotia (44.4181°85.0546°WAnimal
Use Protoco#18013(University of New Brunswiyk Trapping occurred over two
consecutive nights per week until all tagere deployed,; this temporally staggered
approach to tagging reducedstiurbance at the roost and limited the possibility of
roost abandonmentThe @pture of swifts was accomplishedth a modified hoop net
(Colvin and Hegdal 1986, Wheeler 2012) suspdndi the roost chimney before

swifts began to enter for the eveningapping usually was conducted forl15 hours
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centeredon twilight. 1 removed birds from the net immediatelypon entry of one to
five birdsand processed them individually, keepinghdéng time below five minutes
and total time from capture less than 3@inutes I first applied a uniquely numbered
aluminum legband (registered with the Canadian Wildlife Servtoedaptured
individuals, and then fitted each bird with a nanotag (Ldféikeless model NTBQ2,
0.62 g) encoded fdrotek SRX800 receivers2dl8 andhe Motus Wildlife Network
(Tayloret al. 2017)in 2019 | attached the nanotag using an adjustabligulie-8 harness
constructed of 0.5 mm absorbable suture (Vicryl PGA suttifeicon, USP 1) to ensure
the harness would detach after prolonged @spre to the environment (Rappole and
Tipton 1991, Haramis and Kearns 2000, Doerr and Doerr 2002). Full yagopin

tagging methods are described elsewhere (Chapter I1).

Roost Network

Throughout 2018, | used handheld telemetry (Lotek SRX800 receiveagind Y
four element antenna) to search for tagged swifts at known roost sites. After dusk,
when swifts had all emtred the roost chimneys, | scanned at each roost for all tagged
individuds. | alternated doing so along the western shore and scanning in Tiémiig
towns along the eastern shore where there were no know redste to the laborious
nature of this metlod, | used theMotus Wildlife Network(hereafter: Motus Tayloret
al. 2017) to record movement datén 2019 This system uses a series of autteda
telemetry towers that provide a greater geographic range of detection than is possible

with handheld telemetry. This network recorded location data from tagged swifts from

55



Juneg 1 September 2019 within Nova Scotihe detection range for Motus towers

4 km, and of the eight known swift roost sites only one was within this range. For all
other roosts, | assumed #t Motus towerdetectionsrepresented data from the
nearest roostwhich were all within 12 km.

For the Motus datal removed all detectias that were consecutively recorded
fewer than three times to reduce the risk of false positiassociated with this
detection method (Crewet al. 2018).I further limited location @tections to evening
(> 1&00) and morning (< 1M0) to omit swift moverants associated with daily
foraging and focus on evening and morning movements that indicatst fooation. By
listing all location detections fromlotusl & & ¢ | NBpSpulateRa X {§ RANIOS ¢ & A (
by using the previous detection of each tagged swiftimgestamp. Each of these
G¢F NBSGE¢ |y Rverdcphrdidedetd Satle idtheln&wiork, andnovement of
swifts between these nodesasconsidered linksMotus towers that were >2 km
from a known roost with detections overnight were maintained asewih the
network, representing unconfirmed roost sitesthen generated a roost network, and
calculated degree (Equati®il) and closeness (EquatiB2) centrality (igraph
package Csardi and Nepusz 2006) for each roost site to determine if theseunesasf
network connectivitywere influenced by weather patterns.

Equation3-1: Degreecentrality

3
0QQI NQ T
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where v=node in question, n=number of edges, j =node thiggreatest number of
edges
Equation3-2: Closeness centrality

oasi Qa ngl—,Q
x EAQAOEIAET Eil @i AIAGOAARRD xAATT AAO
0 11T AEANOAORETABDOAA
Weather Data

| collected all weather data from Environment Canada weather stations using the
weathercan package in R (LaZerte and Albers 2@E)en weather stations were used
in total. Four roosts had veher statios within 10 km, two within 20 km, and four
with no weather stations < 20 kifrigure 31).

Qurrent climate change predictions for the area of the roost netwiodtude an
increase in temperature, precipitation, and storm occurreriéagseur and Catto 2008,
Ravenscrofet al. 2010, Tituset a. 2013). To capture the influence of storms
occurrence, | includedtmospheric pressure, wind direction, and wind spelalso
includedrelative humidityanddew pointto represent the influence of precipitation.
The final weather variablincluded in tle analyses was temperaturor missing
values,| substituted the median for each parameteérounded all location detectias
of swiftsto the nearest hour andddedthe six weather parameter data for each

corresponding swift detection.
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Analyses

Though here are four measures of network centralityshose to focus on one
local measure (degree centrality) and one measuretingdao the entire network
(closeness centrality).chose degree centrality as it is the simplest measure that
consders the numbef links a node hasSmilarly, | chosecloseness centrality
(Bavelas 195M)ecause it is the simplest representation tltainsiders path lengtH
used fitdistrplus (Delignettduller and Dutang 2015) to determine the error
distribution o both degree ad closeness centrality, selecting the bég distribution
based on the lowest Akaike Information Criterion (AIC; Akaike 1974) &atlecegree
centrality (Table 32) and closeness centralifyable 3 3) exhibited a normal error
distribution. As suchl used logistic regression to determine the béistmodel forboth
measures

Ithenused: t S NE2y Qa O2NNBflFIGA2y (GSai G2 RS
among predialve weather variabled;used a threshold correlation (r) value > 0.7 to
indicate problematic pairwise correlation (Graham 2003; Dormetred. 2013).Dew
point and temperatue were correlated (r €.7356 Table 34). As such dewoint was
removed from analyses as temperature was viewed as a more biologically significant
indicator.

All analyses were conducted in R 3.6.1 (R Core Team 2017a|phtset at
0.05.1 conductedareverse stepwise model selection to mtéy the best it model for

each centrality measure by removing a single term with the poorest model parameters
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individually untill wasleft with a single term. From these modelgonsideredhe

model with the lowest AIC value to be the best and masspnonious mode| also
O2yaARSNBR | p!L/ ¥ W (42 0S AYRAOFGA@GS
for each centrality measure was:

Mrui: Centrality Measure ~ Pressure + Temperatt Humidity + Wind Direction +

Wind Speed

Results

From June; 1 September 2019had detections oR1 of the 53 tagged swifts
(39.6% detection rate), and a total ofL22detections after filtering fothe time of day.
All handheld telemetry data were &hown roost sites. For Motus tower datayifts
were recorded atl2 different towers that were < 10 km from a roost site. Data from
two Motus towers within 20 km of a known roost were pooled to represent detection
data for that roost. Motus towerghat detected swifts > 25 km from a known roost
between 23h00 and 7h00 were retained ascanfirmed roosts.

The best fit model for égreecentralityincludedall variables except for
temperature(Table 35), but there is substantial support fadhe removal of wind
directiond n '0l721) As such, the most parsimoniotesp model for degree centrality
includes pressure, wind speed, and humidity. Closeness centrality sas)qgained

by the model including only atmospheric pressure and wind sggeed
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Table3- 6). Wind directioncould also be includkin the top modeb n !11022)
howeveradding variables reducgsarsimory. These resultpartially support my
predictions, showing that lower pressuaed wind speedvere associated with greater
movement between roost site¢lowever, neither model showed support for lower

temperatures or high hinidity as having influence over network movement.

Pressureand wind speeghowed a negative relationship with both measures of

centrality (

, Figure 33), while humidity a positive relationship withdegreecentrality only
(Figure 34). In both top modelsatmospheric pressure exextl a significanthygreater
influence fegreeit =-22.97, p =<2 x 105, closenesst =-23.71, p =<2 x 10'9) than
wind speedthe next highest ranking variabldd€gree:t =-5.19, p = 25x 107,

closenesst =-2.12 p =0.035.

Discussion

| found that network connectivity, at both local (degree centrality) and global
(closeness centrality) scales, was influenceavbgther (pressureand pressure + wind
speed respectively Atmospheric pressurexerted much greateinfluence over
connectivity and movement between roost sitésmn any other variablewith lower
pressure causing greater moveme¥when considering clemess centralityjncreased

wind speedseducedthe degree of movement, which was expected as swifts are small
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birds spending their entire day in flight and conceivably subjebetmming
overwhelmed byhigh wind speeds.

My results suggest that swiftsdnease their movement between roosts in
preparation for inclement weather. A drop in atmospheric pressure is associated with
incoming rain (Chanet al. 2002), and swifts typically do not forage in rainy conditions
(Steevest al. 2014).Swifts maysense hisdrop in pressure, as has been suggested in
other bird and bat species (Paige 1995, von Bartheld and Giannessi 2011, Breainer
2013), and respond byoving greater distances and thus using different ropatsich
likelyresults fromincreased foragingehaviour. This would allow them to obtain more
energy to sustain them through periods when they cannot forage. Qihlvdrspecies
(e.g. white-crowned Zonotrichia leucophrysand whitethroated ¢ albicollig
sparrows, and garden waldrs Sylvia bori)) have shown similar behavioural response
to lower pressure, by increasing foraging and activity leuetier lower pressure
conditions(Heinet al. 2011, Breuneet al. 2013, Metcalfeet al. 2013).

Swifts may also respond indirectly thanges in atmosphie pressurghrough
changes in insect behaviaukerial insects are less abundant in loypeessure(Paige
1995,Nardiet al. 2013, Martini and Stelinski 20179rcing swifts to travel further
under these conditions to capture suffiaigprey items Redwced prey availability
coupled with the indication of poor foraging conditions could cause a decrease in

atmospheric pressure to spur greater movement in swifts.
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| expected lower temperaturet® be associated with more movement between
roosts aswiftsincrease foraging efforts and thus distance travelédower
temperaturesfor increased thermoregulatory pressur€his pattern has been seen in
other species (@., great tits Parus majorand Eurasian woodcockSdolopax
rusticolg), whichincrease foragig and movement in lower temperatures (Wansink
and Tinbergen 1994However, his prediction wasot supported by my resultdt is
possible that the movement detections were rfote scaleenough to determine
associatiorwith temperature, or that temperaires were not low enough to cause
greater foraging distances in swifts during the study period.

Based on the relationship between atmospheric pressure wind speean
swift movement and network connectivityt is expeced that these roost networks will
experience changes as weather patterns chamNge/a Scotia is expected éxperience
anincreased level of precipitatigstorm occurrenceand storm severity(Vasseur and
Catto 2008Ravenscrofet al.2010) These changeare likely to bessociatedvith a
decreasean food availabilityElkins 201Q)which couldcause greater movement of
swiftsas they increase foraging before poor weath@wifts will likelybe restrictedto a
roost site for greater durations as inclement weatheausing poor foragingaditions,
increases in frequency.

Future research should aim to address thefects onmovement and to track
the study species at finer spatial and temporal scales tltauldaccomplish with the

Motus automated telemetry systemat the time of this stdy. In particular, the
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existence of these roost networks in other areas should be determined, as well as
obtaining site specific weather data lieu of weather station da. The determination
of the actual thermoneutral zone for chimney swifts would dsanformativein

regard totheir adaptations for a highly aerial lifestyle aoouldhave influence over my
results. Myresults highlight the need to understand how wkat patterns influence
natural networks of important wildlife habitat, sse can beter predict their stability

in future.
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Tables and Figures

Table 31: Closeness centrality measures of chimney swiftgetura pelagigaroost
sites in soutern Nova Scotia from Jumel Septembe018 and2019, consisting of
1122detections of21tagged individuals.

Roost| Degree Closenes:
Blandford] 0.18 0.056
Bridgetown| 0.73 0.059
Caledonig  1.00 0.077
Jordan Bay 0.09 0.000
Liverpool  0.09 0.042
Marshalltown|  0.45 0.063
Middleton 0.36 0.040
Upper Clementy  0.82 0.063
Weymouth| 0.36 0.059
Wolfville|  0.27 0.059

Table 32: Goodness of fit of degree centrality to each distribution family.

Distribution LogLikelihood AIC BIC Correlation
Cauchy -383.812 771.624 781.436 -0.147
Exponential -544.463 1090.926 1095.832
Gamma| -409.871 817.741 827.553 0.888
Logistic| -321.213 646.427 656.238 -0.137
LogNormal -546.536 1097.072 1106.884 -1.442x10'
Normal | -282.499 568.997 578.809 3.11x10%*

Table 3 3: Goodness of fit of closeness centrality to each distribution family.

Distribution Log AIC BIC Correlation
Likelihood
Beta | 3056.940 -6109.880 -6100.068 0.990
Exponential 1794.567 -3587.134 -3582.229

Gamma| 3053.554 -6103.108 -6093.296 0.991
LogNomal | 3024.334 -6044.668 -6034.857 6.143x10'2
Normal | 3097.404 -6190.807 -6180.996 -4.571x10%
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Table 34: Collinearity oLINB RA OG A PSS 6SI G§KSNJ JF NR I 0.f S&

Values > 0.hdicate problematic pairige correlation and the least biologically
significant variable is removed from models.

Pressure
Humidity
Temperature
Dew Point
Wind Direction
Wind Speed

Pressure Humidity Temp bew Wind Wind
erature Point Direction Speed
1.0000 -0.1066 0.0458 -0.0142 -0.0478 0.0180
-0.1066 1.0000 -0.6231 0.0665 -0.0261  -0.2566
0.0458 -0.6231 1.0000 0.7356 0.0614 0.3145
-0.0142 0.0665 0.7356 1.0000 0.0494 0.1821
-0.0478 -0.0261 0.0614 0.0494 1.0000 0.0576
0.0180 -0.2566 0.3145 0.1821 0.0576 1.0000
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Table 35: Degree centrality model selection by lowest AIC value. Stepwise model
selection where lowest ranking response variable fagltie) was removed until a
single variable remainegh ! k7 indicates substantial evidence in support of a model,
whilen ! > AQindicates little to no supportWhenn ! K2, the most parsimonious
model is the best fitFull model is Im(Degree ~ Pressure + Temp + Humidity +
Wind_Direction + Wind_Speed).vest AIC favars Im(Degee ~ Pressure).

. N . Wind
Full Temperature  Wind Direction Humidity
Speed
t p t p t p t P t p
Pressure| -226  <2x10'® -228 <2x10'® -229 <2x10'® -232 <2x10'® -23.0 <2x10%
Wind
-4.78 2.2x10% -4.62 4.4x105 -4.53 6.5x10° -5.19 2.5x107
Speed
Humidity | 2.29  0.02 1.9% 0.05 1.93 0.05
wind
L 1.59 0.1 1.66 0.10
Direction
Temp o o
erature
AlC 120.104 119.573 120.294 122.014 146.702
ntu 0.531 0 0.721 2.441 27.129
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Table 3 6: Closenessentrality model selection by lowest AIC value. Stepwise model
selection where lowdsanking response variable (bywalue) was removed until a
single variable remainegh ! k7 indicates substantial evidence in support of a model,
whilen ! > A0 indicées little to no supportWhenn ! k2, the most parsimonious
model is the best fitFull model is In¢loseness Pressure + Temp + Humidity +
Wind_Direction + Wind_Speed). Lowest AIC fiasvdm(Closeness Pressure- Wind
Speed.

Wind Wind
Full Humidit T t
u umidity emperature Direction Speed
t p t p t p t p t p
Pressure| -23.5 <2¥X0Y7 -236 <2x10'™ -23.6 <2x10% -23.7 <2x10% -23.7 <2x10'°
Wind 1 185 006 179 007 217 003 212 0.04
Speed
Wi
_|nd. 1.4 030 1.03 0.30 0.9 0.32
Direction
T
°MP | 120 020 -0.87 0.38
erature
Humidity | -0.84 0.40
AIC -6634.288 -6635.577 -6636.814 -6637.836 -6635.355
nti 3.548 2.259 1.022 0 2.481
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Figure 31: Location of chimney swifGhaetura pelagicaposts that form a network
in southern Nov&cotia, and the Environment Canada weather stations where weather
data were collected. Middleton and Bridgetown used weather data from the same

station, as did Caledonia, Marshalltown, and Upper Clements.
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