
An Anomaly Detection Framework for

DNS-over-HTTPS (DoH) Tunnel Using

Time-series Analysis

by

Mohammadreza MontazeriShatoori

BSc in Software Engineering,
Sharif University of Technology (SUT), 2018

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

Master of Computer Science

In the Graduate Academic Unit of Computer Science

Supervisor(s): Arash Habibi Lashkari, Ph.D, Computer Science
Examining Board: Rongxing Lu, Ph.D, Computer Science, Chair

Suprio Ray, Ph.D, Computer Science
Mohsen Mohammadi, Ph.D, Faculty of Engineering, UNB

This thesis is accepted by the
Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

December, 2020

c© Mohammadreza MontazeriShatoori, 2021

Abstract

Domain Name System (DNS) as a network protocol is vulnerable to several security

loopholes. To cover up some of the vulnerabilities in DNS, a new protocol, named

DNS over HTTPS (DoH), is created to improve privacy, and protect from various

persistent attacks. The DoH protocol encrypts the DNS requests for the DoH client

and sends it through a tunnel to prevent eavesdropping and man-in-the-middle at-

tacks. This research work comprehensively studies these security vulnerabilities,

proposes a taxonomy of potential DNS attacks, analyzes the security aspects of DoH

protocol, and classifies DNS attacks that are applicable on DoH. To achieve these

objectives, we simulated DoH tunnels. The simulated environment covers different

DoH deployment scenarios includes DoH within an application, DoH proxy on the

name server in the local network, and DoH proxy on a local system as suggested

in RFC8484. In this research, we captured malicious and benign DoH traffic and

analyzed it as a two-layered approach to classify benign and malicious traffic at first

layer and characterize DoH traffic at second layer. It is observed that for statistical

features, Random Forest (RF) and Decision Tree (DT) give the best classification

and characterization results among prominent machine learning and deep learning

classifiers at first and second layer, respectively. Moreover, for time-series features,

long short-term memory (LSTM) turns out to be the best classifier for DoH traf-

fic classification and characterization at first and second layers, respectively. The

experimental results indicate that while DoH can be abused to create covert com-

ii

munication channels, the proposed solution is sufficient to detect these channels in

a timely manner.

iii

Acknowledgements

I would like to first sincerely thank my supervisor Prof. Arash Habibi Lashkari for all

the support and help he offered me through my program. I also wish to express my

gratitude to Dr. Gurdip Kaur who was a great teammate to work with. I also would

like to acknowledge the support of Canadian Institute for Cybersecurity (CIC).

This work was made possible by the financial support of University of New Brunswick

(UNB) and the Canadian Internet Registration Authority (CIRA).

iv

Table of Contents

Abstract ii

Acknowledgments iv

Table of Contents v

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Summary of Contributions . 4

1.2 Thesis Organization . 5

2 Background and Related Works 7

2.1 Domain Name System . 7

2.2 DNS Vulnerabilities . 8

2.2.1 DNS Forgery . 9

2.2.1.1 DNS Hijacking . 10

2.2.1.2 DNS Spoofing (DNS Cache Poisoning) 10

2.2.1.3 DNS Redirection . 11

2.2.1.4 DNS Authoritative Poisoning 11

2.2.2 Covert DNS Channels . 11

2.2.3 DNS Rebinding . 13

v

2.2.4 Network Reconnaissance . 13

2.2.5 Denial of Service . 14

2.2.5.1 NXDOMAIN attack 15

2.2.5.2 Random subdomains attack 15

2.2.5.3 Phantom domain attack 15

2.2.5.4 Re
ection/Ampli�cation attack 16

2.3 DNS Available Security Solutions . 16

2.3.1 DNSSEC . 17

2.3.2 DNS-over-Encryption . 17

2.4 DNS-over-HTTPS . 18

2.4.1 Available Con�gurations . 19

2.4.2 DoH Security Concerns and Remaining Vulnerabilities 21

2.4.3 DNS Tunneled Tra�c Characterization 23

2.4.4 Encrypted Tra�c Characterization 26

2.5 Summary . 29

3 Proposed Framework 31

3.1 Overview . 32

3.2 Data capture and pre-processing module 34

3.3 Feature extraction and selection module 36

3.3.1 Statistical features . 37

3.3.2 Time-series features . 38

3.4 Classi�cation module . 41

3.4.1 Statistical features classi�er 41

3.4.2 Time-series Classi�er . 42

3.5 Summary . 44

4 Implementation 46

vi

4.1 DoH Tunnel Dataset Collection . 46

4.1.1 Capturing Web Browsing Network Activity 47

4.1.2 Capturing DoH Tunnel Network Activity 50

4.2 Feature Extraction . 52

4.2.1 Statistical Features Extraction 52

4.2.2 Time-series Features Extraction 54

4.2.2.1 Clumping process . 54

4.2.2.2 Visualizing clump sequences 56

4.3 Summary . 57

5 Results and Discussion 59

5.1 Data Repository and Distribution . 59

5.2 Layer 1: Classi�cation of HTTPS tra�c
ows 60

5.2.1 Classi�cation by Statistical Features 61

5.2.2 Classi�cation by Time-series Features 62

5.3 Layer 2: Characterization of DoH tra�c
ows 64

5.3.1 Classi�cation by Statistical Features 64

5.3.2 Classi�cation by Time-series Features 65

5.4 Summary . 67

6 Conclusions and Future Work 69

6.1 Future Work . 71

Bibliography 80

A Using DoHlyzer package 81

A.1 Requirements . 81

A.2 DoH Meter Module . 82

A.2.1 Extracting Statistical Features 83

vii

A.2.2 Extracting Time-series Features 84

A.3 DoH Analyzer Module . 88

A.4 DoH Visualizer Module . 91

Vita

viii

List of Tables

3.1 List of statistical features obtained 38

3.2 List of time-series features obtained 40

4.1 IP address used for creating the dataset 48

4.2 Dataset Details . 53

5.1 DoH Tra�c Classi�cation by ML/DL 61

5.2 DoH Tra�c Classi�cation by LSTM 62

5.3 DoH Characterization by ML/DL . 65

5.4 DoH Characterization by LSTM . 66

ix

List of Figures

2.1 Domain Name System . 8

2.2 Taxonomy of DNS attacks . 9

2.3 DNS-over-HTTPS by installing DoH proxy in individual host 20

2.4 DNS-over-HTTPS by installing proxy on local name server 21

3.1 DoH tra�c classi�cation and characterization architecture 34

3.2 The clumping process . 39

3.3 Plot of the DNN model with ` = 5 43

4.1 Overall view of the dataset collection network 47

4.2 DoH tra�c for Facebook and Google DoH Tra�c 57

5.1 Distribution of di�erent classes of tra�c
ows in the dataset 60

5.2 Trend of precision score per di�erent values of̀ in layer 1 63

5.3 Distribution of clump sequence duration in layer 1 64

5.4 Trend of precision score per di�erent values of̀ in layer 2 66

5.5 Distribution of clump sequence duration in layer 2 67

A.1 Running meter module to see the help text 82

A.2 Running meter module to extract statistical features 83

A.3 Statistical features extracted by meter module 84

A.4 Running meter module to extract time-series features 85

A.5 Time-series features extracted by meter module inoutput dir directory 86

A.6 Using clump aggregator script on the output of previous step 87

x

A.7 Result of clump aggregator script . 88

A.8 Using analyzer module to create DNN classi�ers 89

A.9 DNN classi�ers being trained by Tensor
ow 90

A.10 Results of the analyzer module benchmarks 91

A.11 Results of running visualization on a DoH
ow 92

A.12 Results of running visualization on a non-DoH
ow 93

xi

Chapter 1

Introduction

Domain Name System (DNS) is a naming system mostly known for its importance

to provide a mapping between human-readable domain names and computer un-

derstandable Internet Protocol (IP) addresses. This protocol can also map domain

names to data types other than IP, such as texts, keys, and other domain names.

Being one of the earliest network protocols still is used, DNS has several critical secu-

rity and privacy issues. For example, DNS mostly uses plain-text UDP packets that

can be easily accessed by actors that have access to the underlying network. This

vulnerability makes DNS protocol highly susceptible to various active and passive

attacks, such as man-in-the-middle attacks (MitM) and eavesdropping.

Moreover, other vulnerabilities in DNS protocol and its implementations have helped

attackers to mount attacks that would not target DNS servers and communications,

but misuse the DNS protocol to target other servers and networks. An example of

such attacks is "DNS re
ection attack" that uses IP spoo�ng in DNS requests to

direct the DNS response packets to the target network, and disables the network

by
ooding it with these packets. Several updates to the DNS protocol and infras-

tructure has been made over the years to make it more secure, including DNSSEC,

which is a collection of security extensions speci�ed by Internet Engineering Task

1

Force (IETF) [47]. Other e�orts have been made to make DNS more secure and pri-

vate, including the introduction of new encrypted DNS protocols such as DNSCrypt

and DNS-over-TLS[25].

In 2018, a new protocol named DoH was released, which not only enhances per-

formance but also improves user privacy and security by preventing eavesdropping

and manipulation of DNS data through MitM attacks [22]. DoH wraps DNS records

(both requests and responses) in an HTTPS connection, providing encryption and

authentication of the server, and changing the connection-less aspect of DNS. DoH

primarily serves two purposes{preventing on-path devices from interfering with DNS

operations and allowing web applications to access DNS information via existing

browser APIs. It can be deployed in three ways, by installing a proxy on a local

system, implementing it within an application, or installing a proxy on the local

name server.

Even though DoH provides additional security due to the encryption of DNS records,

there has not been a thorough investigation of its security vulnerabilities and limi-

tations. Most importantly, while there is an abundance of research on DNS security

and the possible attacks on DNS protocol and infrastructure, the corresponding at-

tacks on DoH are not studied systematically. In this thesis, �rst, all the existing DNS

attacks are reviewed, and then the related attacks on DoH protocol are studied. To

provide a systematic and thorough investigation of DoH security, I investigated all

three di�erent deployment strategies in this work.

As one of the most critical security concerns of DoH protocol, DoH covert channels

are used by attackers to hide malicious DNS queries inside it by tunneling data

through DNS packets [42]. Covert channels are discussed and simulated using a

series of experiments in this thesis. These covert channels are an upgraded version of

the traditional DNS tunnels that are already abused by malware as a covert method

of communication. DNS tunneling encapsulates the DNS communication between a

2

DNS client and DNS server to make it di�cult to interpret by an eavesdropper. The

DNS data is coded within records of an otherwise standard DNS request and the

server may or may not return with some data encoded in the corresponding DNS

response.

There can be di�erent motives for using DNS as a means of data transmission. Most

importantly, many �rewalls do not examine the contents and frequency of DNS

packets, which makes it easier for this data transmission to go unnoticed. Secondly,

since the packet will reach the modi�ed name-servers over several hops through DNS

recursion, the communication is harder to detect and block using standard methods

such as IP blacklisting. Many malware has already abused this method to ex�ltrate

data or to create a communication channel with their command-and-control servers.

This vulnerability helps attackers to take some degrees of control over the infected

devices and potentially use them to orchestrate attacks on other targets such as

launching DDoS attacks on online services [38].

DNS tunnels can be detected with a variety of methods including domain name

analysis and statistical analysis of DNS packets. Di�erent approaches have been

proposed to detect anomalous domain names, such as using statistical models [11,

18, 17, 38]. Based on the previous research, frequency of DNS resolutions, length

of the sub-domains, and the usage of TXT records are also common variables that

can help detect DNS tunnels [11, 42]. Also, blocking DNS tunnels may be achieved

through domain blacklisting, IP blacklisting, and dropping DNS packets that are

thought to be malicious [15].

Many security researchers have been criticized DoH for making DNS tunnels harder

to detect and mitigate. First, Since the DoH wraps the DNS tra�c in HTTPS,

the DNS tra�c is imperceptible to the network infrastructure between the client

(malware) and the DoH server. This feature e�ectively makes detection methods

that rely on examining the DNS packets obsolete for the �rewalls. Second, since

3

HTTP/2 is the minimum version of HTTP that DoH standard recommends for using

with DoH, Malware can utilize the HTTP/2 connection to send several DoH request,

without creating a separate connection (or packet) for each request. The same also

applies to the responses that DoH server is sending to the malware. Through this

method, malware can hide the frequency of their DNS resolutions, further reducing

the number of methods that can detect DNS tunnels [1].

By simulating the network tra�c made by DoH covert channels in this work, I provide

a way of studying their properties and relevant mitigation strategies that can be used

to limit their potential adverse e�ects. The network tra�c from these simulations

is captured in the form of a dataset that would help us (and other researchers) to

create classi�ers capable of detecting DoH covert channels. In addition to using

various DNS tunneling tools and making them compatible with DoH protocol, a

proof-of-concept DoH tunneling tool, in the form of a bot, is also created and used

in creating the covert channels included in the dataset. All datasets and developed

packages are publicly available as free datasets and open-source projects.

Detection of DoH tunnels involves a two-layer classi�er that �rst labels tra�c as

DoH or non-DoH (any other HTTPS tra�c), and then classi�es the DoH part of the

dataset into two classes of benign or malicious DoH tra�c. To �nd the best set of

features and algorithms for this classi�cation attempts, a variety of classi�ers and the

features those classi�ers work with, are studied based on the existing literature on

encrypted network tra�c classi�cation. It is shown that the proposed classi�cation

technique using time-series features can perform as well as the current methods while

needing only a small subset of tra�c compared to those methods.

1.1 Summary of Contributions

In this thesis, the following contributions are made:

4

� Creating a taxonomy of known DNS attacks (Cont1).

� Systematically investigating the related attacks on DoH protocol and �nding

the weak spots on the design of this protocol (Cont2).

� Presenting a novel two-layered approach to classify DoH tra�c from non-DoH

tra�c at layer 1 and characterize DoH tra�c at layer 2 (Cont3).

� Proposing a new feature-based DoH anomaly detection framework using time-

series representation of tra�c
ows by introducing the concept of packet clumps

and demonstrating the e�ectiveness of this feature set in encrypted tra�c char-

acterization (Cont4).

� Generating a labeled dataset by capturing Benign-DoH, Malicious-DoH and

non-DoH encrypted tra�c in the network premises and evaluate the proposed

detection framework (Cont5).

1.2 Thesis Organization

The following chapters of this thesis are organized as follows:

� In chapter 2, �rst the necessary background for the thesis is established by

detailing DNS and DoH protocols. Then, a taxonomy of the known DNS

attacks is created by reviewing the existing literature on DNS vulnerabilities.

This taxonomy is then used to �nd related attacks on DoH. Finally, the current

literature on DoH attacks is reviewed, plus all the relevant studies that would

help us in designing and evaluating my mitigation technique.

� Chapter 3, describes the framework designed to counter DoH tunnels.

� Chapter 4 details the implementation of the proposed framework, including

the technical steps taken to create the necessary dataset and to implement the

5

classi�ers. Furthermore, the implementation details of DoHBot are presented

in this chapter.

� Chapter 5 focuses on the experiments done to evaluate the detection frame-

work. Details of the experiments that compare the proposed method to the

existing techniques are given, and their results are analyzed to provide a clear

view of the pros and cons of the proposed framework. Using the abilities in-

cluded in DoHBot, rule of padding in preventing detection of DoH tunnels are

also evaluated.

� Chapter 6 summarizes the contributions of this work and provides possible

future works.

6

Chapter 2

Background and Related Works

2.1 Domain Name System

Domain Name System (DNS) is one of the most important protocols of the Internet,

used for providing a mapping between human-readable hostnames and computer

understandable Internet Protocol (IP) addresses. DNS protocol uses a decentral-

ized hierarchical approach that helps this protocol scale with the growth of the

Internet. To provide this decentralization while maintaining the authenticity of the

results, DNS de�nes hierarchical divisions known as DNS zones that are distributed

between name servers. Each zone can be speci�ed by a domain name (such as "ex-

ample.com.") that also shows what subset of DNS queries can be answered by the

name servers responsible for that zone. Furthermore, name servers responsible for a

zone can delegate the authority of each of their sub-domains to other servers, thus

performing \cuts" that create new zones. For example, the name servers for \exam-

ple.com." can delegate the authority of \test.example.com." to some other name

servers.

The root of this tree-like structure is called the DNS root zone, which has the label

`.' (dot). The servers responsible for answering queries in this zone are called root

7

name servers. There are 13 root name servers as of July 2020, controlled by vari-

ous organizations, all under the oversight of Internet Assigned Numbers Authority

(IANA).

When a DNS client generates a DNS query asking for an IP address, the local DNS

server responds after looking into its cache. Suppose it does not �nd the answer

within the cache memory. In this case, it forwards the DNS query to recursive DNS

resolver. Then it tracks down the DNS record with repetitive DNS queries to root

name servers, Top Level Domain (TLD) name servers and authoritative name servers

until it gets the target authoritative answer [36]. Figure 2.1 shows the working of

the domain name system with sequence number marked on the direction of
ow.

Figure 2.1: Domain Name System

2.2 DNS Vulnerabilities

To have a comprehensive view of DNS security concerns, I examine both attacks

that target DNS infrastructure and individual users using DNS and attacks where

DNS protocol is itself not targeted by malicious actors but is abused in the process

of the attack. It is worth noting that even though the academic literature on DNS

8

security regards each of these attacks separately, in real life cyberattacks may use a

combination of DNS vulnerabilities to create attacks based on their motives, abilities

and the situation in hand.

There are multiple ways of categorizing cyber-attacks related to the DNS protocol. In

this section, I classify these attacks by the type of malicious activity they incorporate,

and provide a taxonomy of DNS attacks as shown in Figure 2.2 (Cont1 covered).

Figure 2.2: Taxonomy of DNS attacks

2.2.1 DNS Forgery

DNS Forgery is any activity that is done to introduce unauthorized changes to the

DNS responses. Some sources call these activities DNS Poisoning, but I found DNS

Forgery to be a better umbrella term since usually DNS Poisoning refers just to DNS

Cache Poisoning. These activities include DNS Hijacking, DNS Spoo�ng (also known

as DNS Cache Poisoning), DNS Redirection, and DNS Authoritative Poisoning.

9

2.2.1.1 DNS Hijacking

This type of activity involves a DNS server responding with fake DNS information.

Even though the same term has been used for what I call DNS Redirection in this

work, I use DNS Hijacking strictly to refer the act of sending fake DNS responses by

DNS servers. In other words, I do not consider attacks that change the DNS resolver

used by the user as DNS Hijacking (even though they may also incorporate DNS

Hijacking). Non-malicious uses of DNS Hijacking include redirecting users to captive

portals (used widely in open wireless networks), censorship by governments, blocking

malicious websites, and displaying customized error pages (sometimes including ads)

instead of responding with NXDOMAIN. It can also be incorporated by rogue DNS

servers to redirect users to malicious websites such as the ones used for phishing.

2.2.1.2 DNS Spoo�ng (DNS Cache Poisoning)

This attack works by introducing forged DNS information into the cache of DNS

resolvers, causing the resolver to mistakenly send potentially malicious responses to

the queries made by users [54]. To produce such an e�ect, the malicious actor should

make the DNS resolver believe that it had received a valid response to the requested

query. To do this, they should send forged DNS responses to the DNS requests made

by the resolver, with the same query ID and port number as the DNS request packet.

The malicious actor may have the necessary access to the network for performing

packet interceptions, allowing them to look at the DNS requests made by resolver

(and their port number and query ID). Otherwise, they would have to guess those

values, so that their responses would not get dropped by the resolver. In addition to

the main attack that involves poisoning a single DNS entry (domain), a variation of

this attack mostly referred to asKaminskey Attack [20] can poison a whole zone (a

domain and all of its subdomains).

10

2.2.1.3 DNS Redirection

In this type of attack, that is also known as \Resolver Redirection Attack", the goal

of the attacker is to change the default DNS resolver of the user to a name server

controlled by them. This attack is usually performed through malware or by changing

DNS resolver settings on vulnerable network infrastructure, such as routers with

default passwords that are accessible through the network. The resolver con�guration

may be performed manually or through DHCP/PPP [15]. This change will let the

attacker control all of DNS responses so that they could collect information and/or

possibly redirecting users to malicious web pages. What makes this attack, especially

dangerous is that the user does not get any indication of the attack. By hijacking the

DNS responses, the attacker can use DNS redirection to enable more sophisticated

attacks, such as phishing, with minimum risk of detection.

2.2.1.4 DNS Authoritative Poisoning

This attack focuses on changing DNS records on the DNS authoritative servers.

While this change would be more challenging than changing the resolver settings of

users, it has the advantage of a�ecting all of the users at once. To perform this type of

attack, the attacker would need to focus on the vulnerabilities in the implementation

of DNS name servers. Such vulnerabilities may give enough access to the attacker to

either change the records or redirect part of the DNS zone to another name server

controlled by the attacker [15].

2.2.2 Covert DNS Channels

DNS tunneling is a method of using DNS protocol as a mean of encapsulating data

transmission between a client and a server. The data is coded within parts of an

otherwise standard DNS request and the server (which is designed to understand

these requests) may or may not return with some data encoded in the corresponding

11

DNS response. There can be di�erent motives for using DNS as a means of data

transmission. Most importantly, many �rewalls don't examine the contents and

frequency of DNS packets, which makes it easier for malware to go unnoticed [51].

Secondly, since the packet will reach the modi�ed nameservers over several hops

through DNS recursion, the communication is harder to detect and block, using

standard methods such as IP blacklisting. Many malware samples have already used

this method to ex�ltrate data [45, 58, 37], or to create a communication channel with

their Command-and-Control servers [14]. This option helps attackers to take some

degrees of control over the infected devices and potentially using them to orchestrate

attacks on other targets, for example, launching DDoS attacks on online services.

The outgoing data is encoded with a particular encoding such as base32 that only

produce outputs valid for a subdomain. Then a DNS packet is created using the

encoded data as the subdomain of an address that is going to be resolved. By

sending several DNS requests, each containing less than 253 bytes of the data (the

maximum length of a full domain name), the malware can send varying amount of

data to the attacker. The incoming data is usually encoded with base64 or similar

encodings and put into a TXT record of a DNS response. This data may be used to

control the infected device.

There are multiple ways to detect and shut down DNS tunnels which usually try to

investigate the domain names used in DNS requests. Di�erent approaches have been

used to detect anomalous domain names, such as using statistical models [11, 17, 18,

38]. Frequency of DNS resolutions, length of the subdomains, and the usage of TXT

records are also variables that can help detect DNS tunnels [9, 44]. Blocking DNS

tunnels may be achieved through domain blacklisting, IP blacklisting, and dropping

DNS packets that are thought to be malicious.

12

2.2.3 DNS Rebinding

DNS rebinding attacks bypass the local network restrictions by mapping a domain,

which is controlled by the attacker to a host in the local network. These attacks are

used to ex�ltrate sensitive information, breach privacy networks, perform privileged

operations, and trigger remote code execution to exploit a vulnerable service on

network [35]. An attacker registers a domain and delegates it to a DNS server under

his control. The server is con�gured in such a way that it does not save the response

in its cache. When a victim browses the malicious domain, he is redirected to the

server hosting malicious content. The exploitation of vulnerable services can be

simpli�ed by using Singularity of Origin, a tool publicly available in GitHub [39].

However, this attack can be easily prevented by following techniques:

� Filtering private and loopback IP addresses

� Using a �rewall in the gateway or on local computer

� Con�guring web browsers to resist DNS rebinding

� Con�guring web servers to drop HTTP requests from unrecognized hosts

2.2.4 Network Reconnaissance

To attack the desired target, attackers need to access the DNS repository to obtain

the victim's namespace information. Following reconnaissance methods can be used

by attackers to do so[15]:

� Query Sni�ng: An attacker can log DNS queries and responses to identify the

potential targets.

� Wildcard Queries: Attackers can address their queries with ANY wildcard

so that DNS server responds with all the resource records associated with a

queried domain.

13

� Zone Transfers: Attacker impersonates as a slave server and requests zone

transfer from the master server to identify targets for direct attacks. Zone

transfers include information such as name servers (NS), hostnames (A), aliases

(CNAME), mail exchangers (MX), the Start Of Authority (SOA) records,

pointer records (PTR), and so on[43].

2.2.5 Denial of Service

There are several types of
ood attacks that can cripple DNS servers. The main idea

is to
ood a DNS server (either recursive or authoritative, or both) with DNS requests

that are crafted to use crucial resources such as CPU, memory, and cache space. If

e�ective, this attack can slow down the target, thus preventing the resolution of

legitimate DNS requests.

DNS servers can mitigate this kind of attacks by several methods, including:

� Preventing cache pollution with better cache management, such as not keeping

NXDOMAIN responses.

� Detecting malicious clients with the number of NXDOMAIN requests and

blacklisting them.

� Blacklisting hosts that are slow to respond.

DoH usage can a�ect these attack strategies in many ways. Floods that target

DoH servers may be more e�ective in comparison with their DNS counterpart. DoH

servers keep an open HTTP/2 connection with their clients that also have the over-

head of HTTPS handshaking. Attackers can create particular malware that maxi-

mizes this overhead on DoH servers, thus making DoH
ood attacks more dangerous

that DNS
ood attacks.

14

2.2.5.1 NXDOMAIN attack

In the NXDOMAIN variant, the attacker uses domain names that don't exist. These

prompts the recursive server to do DNS recursion. By
ooding the server with these

requests, resources such as CPU, and memory get exhausted, and the server slows

down. Depending on the implementation of the DNS server, it can also �ll up the

DNS cache with NXDOMAIN responses and
ush out other cache entries that are

legitimate. This process is called cache pollution, and it forces the DNS server to do

more recursions (since the number of cache hits goes down drastically in this state).

2.2.5.2 Random subdomains attack

In the Random Subdomain variant, the attacker uses addresses that are random sub-

domains of a legitimate domain. Like the NXDOMAIN attack, the recursive server

still needs to do recursion and experiences the load of the
ood of DNS requests.

But the
ood also incapacitates the authoritative servers of the domain used, by the

same mechanism.

Where DoH server itself is not the target of a
ood attack, there are advantages

for the attacker in the Random Subdomain variant of the attack. Since the tra�c

is funneled through the DoH server, the DNS request would be stripped of data

that can identify sources of attack. So, the target server cannot detect and blacklist

malicious clients. The attack can be mitigated by dropping all packets from the

DoH server. But if the usage of DoH instead of DNS is widespread, which means

legitimate DNS tra�c is also dropped and will deny normal users from using the

DNS server.

2.2.5.3 Phantom domain attack

In the Phantom Domain variant, the attacker sets up special name servers that are

designed to be slow, or unresponsive. The
ood will target the recursive server with

15

requests that should be resolved using the particular name server (for example, using

random subdomains of the domain of that server). The speci�c name server ensures

that the recursive server wastes a substantial amount of resources for each request.

By
ooding the name server with these time-wasting requests, the attacker wishes

to exhaust the available resources on the victim's name server, eventually making it

impossible for legitimate queries to go through [15].

2.2.5.4 Re
ection/Ampli�cation attack

DNS ampli�cation/re
ection attack abuses the connection-less nature of DNS to

spoof the sender IP of a DNS query, sending the results of all queries he/she makes

from a wide range of clients to the victim's server [48]. The attacker also may amplify

these responses by creating DNS queries with much larger responses that the query

packet size. This
ood of packets may cripple the victim's local network, rendering

the victim's server unresponsive. Several mitigation techniques have been proposed

for this problem [13, 26, 48], but since this issue stems from the original design of

DNS protocol, we can not completely rule out these attacks. A recent variant of this

attack, called NXNSAttack, abuses the limitations in DNS server implementations

to amplify and re
ect seemingly legitimate DNS packets to the target servers [50].

2.3 DNS Available Security Solutions

As I discussed in the previous sections, the DNS protocol comes with a lot of risks

in security and privacy, mostly due to the unencrypted nature of the contents of

DNS packets. These risks mostly arise from the fact that DNS is one of the oldest

protocols of the Internet and has been designed without regards to the security

standards and solution that are well-accepted nowadays, such as digital signatures

or cryptography. DNS is widely used on the Internet for a variety of applications,

16

mainly domain resolution. This widespread usage of DNS makes changes to the

DNS protocol a challenge since changes should be backwards-compatible to make

sure they don't break any of the existing services utilising DNS. There have been

several attempts to make DNS more secure with varying levels of success. DNSSEC

(Domain Name System Security Extensions) and DNS-over-encryption are currently

seen as the leading solutions to DNS security issues.

2.3.1 DNSSEC

To establish authenticity of DNS responses, IETF introduced a set of extensions

to DNS called DNSSEC. These new speci�cations allow for backwards-compatible

additions to DNS, providing cryptographic authentication of data received by clients.

RFC3833 outlined the explicit design requirement for DNSSEC as data integrity and

data origin authentication [7]. To deliver these requirements, DNSSEC uses digital

signatures in the form of additional resource records (RR) included in DNS responses.

These resource records provide signatures for the response and the cryptographic

keys necessary for validating the signature. The digital signature used by DNSSEC

utilizes public-key cryptography and authentication is done through a chain of trust,

starting at DNS root zone [4].

Even though DNSSEC will provide data integrity for clients that support it, it still

won't provide any additional security for con�dentiality of the transmitted data.

DNSSEC authenticates the DNS messages but will not encrypt them. So we have

to implement other solutions in DNS infrastructure to provide con�dentiality of the

data.

2.3.2 DNS-over-Encryption

Since DNS was designed without considering security and privacy concerns, there is

no encryption included in the DNS protocol, and all of DNS data are sent in plain

17

text over the network. This vulnerability means that anyone with access to the

network tra�c can read this data and possibly change them for malicious purposes

in a man in the middle scenario.

Several methods have been proposed to tackle this security concern, using encryp-

tion in the DNS protocol. For example, DNSCurve is a method for securing the

connection between the DNS resolver and authoritative servers, or DNS-over-TLS

(DoT), DNSCrypt, and DNS-over-HTTPS (DoH) are available solutions to secure

the connection between the DNS clients and the DNS resolver.

2.4 DNS-over-HTTPS

DNS-over-HTTPS (or DoH) is one of the new methods of securing DNS communi-

cations that uses HTTPS protocol to wrap DNS packets. It was proposed in May

2017 by Paul Ho�man of ICANN and Patrick McManus of Mozilla and was sub-

sequently published by IETF in October 2018 in the form of RFC8484 [22]. DoH

protocol uses widely used HTTPS protocol to both secure DNS communications be-

tween DNS clients and DNS resolvers, and provide a means of resolving addresses

for web applications.

To use DoH, both the client and the resolver should have the means to interpret

this protocol. DoH clients wrap their DNS packets in an HTTP request with a

speci�c media type (application/dns-message) and send them to the DoH server.

Even though the standard may well work without encryption, It has been mentioned

that this approach should only be used with HTTPS connections that are encrypted

using TLS. The DoH server which acts as a DNS resolver receives this request and

will respond after performing standard DNS resolving activity (such as checking

DNS cache and performing DNS recursion). The response would be again in HTTPS

protocol, using the media typeapplication/dns-message.

18

Using HTTPS protocol also retains the advantages of HTTP protocol such as caching,

redirection, and compression. Newer features of the HTTP protocol that are intro-

duced in HTTP/2 can also be used in DoH for abilities that were not possible before

in standard DNS connections. One of these essential features that have been men-

tioned in RFC8484 is HTTP/2 server push that allows DoH servers to send additional

DNS records that they predict the client would need later on [22].

2.4.1 Available Con�gurations

As backward compatibility has been one of the design requirements of DoH protocol,

meaning that it should not disrupt current DNS implementations. It can be used

in various con�gurations that help using DoH with other DNS clients and servers.

There are three main deployment con�gurations which are detailed here:

1. Using DoH-enabled clients: This method that is used primarily in up-to-date

web browsers such as Mozilla Firefox and Google Chrome involves clients that

originally use DoH instead of DNS to resolve addresses. In this scenario, a

DoH client contacts the DoH server directly. For example, to enable DoH in

Google Chrome browser, a user needs to typechrome://
ags/#dns-over-https

and enableSecure DNS lookups. Similar setting is enabled for Microsoft edge

and Opera web browsers. However, for Mozilla Firefox, user needs to go to the

connection settings under browser settings and enable DNS over HTTPS. In

addition to enabling inbuilt DoH support for web browsers, speci�c operating

systems and speci�c versions of those operating systems need to be installed

to con�gure DoH. This is the easiest way to install a DoH in a local network.

2. Using DoH proxies in individual hosts: In this scenario, users install a DoH

proxy on their system. This proxy will capture all their DNS requests, wrap

them in DoH protocol, and send them to the DoH server. It secures all of

19

the host's DNS communications. Figure 2.3 shows the working of the DoH

protocol by installing DoH proxy in individual host.

Figure 2.3: DNS-over-HTTPS by installing DoH proxy in individual host

A traditional client sends a DNS query to the local DoH proxy in the local

network. The local DoH proxy searches the response in its cache, and if it does

not �nd it there, it encrypts that query and forwards it to DoH server over the

public network. The DoH server then repeatedly forwards the encrypted DNS

query to a root name server, TLD name server, and domain's authoritative

name server until the DoH server receives a response.Figure 2.3 also presents

a DoH-enabled client that can directly send an encrypted DNS query to the

DoH server. This scenario of installing DoH in a local network is challenging

to implement as compared to the previous scenario but is more accessible than

the next scenario.

3. Using a DoH proxy on the local name server: In this approach, the user installs

DoH proxy on the local name server. DNS requests from the network are

translated to the DoH and sent to the DoH server. In this con�guration, the

network's DNS communications can be secured, without the need to con�gure

each one of the hosts in the network. Furthermore, this method does not need

20

users to be informed about the technicalities of DNS and DoH con�guration.

Figure 2.4: DNS-over-HTTPS by installing proxy on local name server

Figure 2.4 presents the deployment of DoH in this scenario in which the local

DoH proxy is installed within a traditional client as a name server. The working

of DoH remains the same as the previous scenario. This is the most challenging

scenario to deploy DoH in a local network.

2.4.2 DoH Security Concerns and Remaining Vulnerabilities

While there have been many studies on applicability and performance aspects of

DoH [10, 23, 56], studies on the security aspects of DoH remains limited. Two

objectives seem to have taken the spotlight in DoH security: 1) Privacy and 2) Data

Ex�ltration. I identify and discuss major security concerns in DoH security in this

sub-section (Cont2 covered).

Siby et al. [52] challenge the privacy of DoH protocol, showing that it is technically

possible to defer private information about one's web browsing activity by capturing

and analyzing their DoH tra�c [52, 53]. Other authors also studied DoH privacy

aspects, with varying opinions [8, 33]. This is because while DoH encrypts the tra�c

between hops, mitigating man-in-the-middle attacks, the widespread use of DoH

21

may result in the concentration of queries in a handful of DoH service providers.

By collecting name resolution information, these service providers may be able to

identify users and target them with advertisements or sell their data.

Data ex�ltration is another issue with the DoH protocol. DNS tunnels have been

widely used by malware to transfer data in and out of networks covertly [40]. Many

security researchers have already criticized DoH as a new protocol for resolving

domain names for making DNS tunnels harder to detect and mitigate. This will

pose a great danger to enterprise networks [12, 27]. There are several ways DoH can

help malware with their DNS tunnels. This list includes some of these concerns:

� Encryption of DNS requests and responses: Since the DoH wraps the

DNS tra�c in HTTPS, the DNS tra�c is unavailable to the network infras-

tructure between the client (malware) and server (DoH server). This e�ectively

makes detection methods that relied on examining the DNS packets obsolete

for the �rewalls.

� Hiding the number of requests and responses: HTTP/2 is the mini-

mum version of HTTP that DoH standard (RFC8484) recommends for using

with DoH. Malware can utilize this HTTP/2 connection, to send several DoH

requests, without creating a separate connection (or packet) for each request.

The same also applies to the responses that DoH server is sending to the mal-

ware. Through this method, malware can hide the frequency of their DNS

resolution, further reducing the number of methods that can be used to detect

DNS tunnels.

� Server push: C2 servers may also be able to utilize "server push", a feature

of HTTP/2 that is also part of DoH standard. Using "server push", servers

can send DNS responses to clients, without an explicit DNS request from the

clients. Also, it dependents on DoH server implementation, and might not be

22

available using current DoH servers.

2.4.3 DNS Tunneled Tra�c Characterization

To further focus on detecting covert channels in DoH protocol (DoH tunnels), �rst,

the related studies on DNS tunnel detection are examined in this section. Qi et al.

[44] proposed a bigram based DNS tunnel detection algorithm to de�ne a scoring

system for domain names to demonstrate the frequency of their bigrams in real

domains. Their main idea is that real domain names are made by humans, and their

bigrams follow Zipf's law:

f req(i) =
f req(1)

i

In other words, the frequency of any bigram is inversely correlated to its frequency

rank.

On the other hand, since DNS tunnels use base64 and base32 to encode data, their

domains have bigrams with random distribution, and thus not consistent with Zipf's

law. Using this idea, they de�ne a scoring system for domain names, that show how

frequent their bigrams are, in real domains. They use a dataset of real domains, to

�nd the frequency of each bigram, and then use it to create an online classi�er that

can detect DNS tunnels by scoring each DNS packet in the tra�c. Their result show

improvement over earlier methods that used letter frequency and reduced the false

positive rate signi�cantly.

Buczak et al. [11] used tra�c captured at devices of an enterprise network and

tra�c data at the perimeter of the network to �nd the best place to capture and

analyze data. Their captured data contains DNS tunnel tra�c from various sources.

They used these datasets to train a classi�er using random forests algorithm. They

selected features from the previous works on this area and used part of the tra�c

data from known sources as their training data. Their results showed that their

method is su�ciently signi�cant, even when the classi�er has not seen the tunneling

23

technique in the training set and determined which variables and features for the

random forest model work better.

Ellens et al. [17] de�ned a
ow-based DNS tunnel tra�c detection method that

grouped DNS packets with similar properties (such as source, destination, protocol,

etc.). Authors captured benign tra�c in the network and used open-source tool to

create tunneled tra�c for web browsing, SSH communication and �le transfer. Three

categories of anomaly detectors were applied to detect anomalies in captured data

without inspecting the packets deeply. Results showed that
ow-based detection is

promising and capable of detecting all the tunnels used in the experiment irrespective

of some false-positive results.

Do et al. [18] worked on tunneling tra�c in mobile networks emphasizing on bypass

procedures used by some mobile applications to avoid �rewalls. Authors analyzed

the shortcomings of payload and tra�c analysis methods proposed earlier. They

analyzed the legitimate and malicious tra�c using k-means and One Class Super

Vector Machine (OCSVM). Their analysis results showed that OCSVM with some

speci�c settings could be used to detect DNS tunnels without using predetermined

features used by previous researchers.

Packet-based method of classi�cation is gaining importance since 2019. In [57],

researchers proposed a packet-based method of classi�cation for DNS tunnel tra�c

by turning the DNS packets to an ASCII vector, removing features dependent on the

test platform, and padding them to 400 bytes by adding zero values. Authors used

ML models in the classi�cation module, and results showed that using their feature

selection method, they can achieve almost perfect precision and recall.

Furthermore, Liu et al. [30] proposed a packet-based method for detecting DNS

tunnels, focused on the byte-level presentation of packets in 2019. They divided each

packet into 300 bytes (padding may be required), and each byte is encoded using

a one-hot method into 257 values (256 plus one specifying padding bytes). They

24

sent this representation to an embedding layer, which changed these 257 values to 64

features. Authors compared their results to standard ML algorithms and showed that

their method could surpass those methods by a small margin. Their �nal suggested

method was a CNN algorithm with these features and windows size 3, 4, and 5 sliding

through an embedded representation of 300 bytes of the packet.

Moreover, Mouhammd and Tariq [6] presented a thorough review of available tools

explicitly developed for DNS tunneling and other tools that have other primary

purposes but utilise DNS tunneling as a data ex�ltration method. They illustrated

the experimentation with Iodine DNS tunnels, and it shows how DNS tunneling

could encapsulate other protocols such as SSH. Authors also described practical

approaches for DNS tunnel detection using Snort, a popular IDS tool.

Liu et al. [31] discussed employing binary classi�ers in recursive DNS servers for on-

line DNS tunnel detection and prevention. Their proposed classi�er uses 18 features

constructed from the time interval between request and response, request packet

size, sub-domain entropy, and record type of DNS communications. The input to

the classi�er is created by using a sliding window on the pairs of DNS request/re-

sponse. They provided classi�cation results for several ML trained models using this

feature set and compared results for various window sizes.

Nadler et al. [38] provided a thorough history of DNS tunneling used by malware and

detection algorithms that has been proposed over the last few years. They proposed

architecture for detecting and blocking high-throughput and low-throughput data

ex�ltration over DNS. In the data collection phase, DNS queries were collected and

grouped by their domain name. In the feature extraction phase, several features

were computed over a sliding window, to be used in the detection of anomalous DNS

requests. These features were then used in the isolation forest algorithm, which is

an anomaly detector method.

This produced a model, that could be used on each sample of the data, to calculate

25

an anomaly score that shows how much the sample di�ers from the legitimate traf-

�c model. Using this method, requests to malicious domains can be detected and

dropped. Their proposed method is veri�ed using a real-world dataset from several

public recursive DNS servers with a high volume of DNS tra�c. The anomalous traf-

�c used in the study was generated using several known malware and open source

tools available for implementing DNS tunnels. A comparison with other works in

this subject shows that their proposed method is a more robust way of detecting

DNS tunnels, especially for the malware with low throughput tra�cs.

2.4.4 Encrypted Tra�c Characterization

A thorough analysis is carried out to provide insights into lessons learned and chal-

lenges in the classi�cation of encrypted tra�c using deep learning [5, 41, 46]. It is

observed that lack of human-generated and up-to-date public datasets is a major

challenge in encrypted tra�c classi�cation. In addition to that unbiased and infor-

mative input is important for feeding to the complex deep learning classi�ers as they

depend on the size of input for predictions. Further, it is evident that none of the

deep learning classi�ers is the best choice for all types of data inputs. Researchers

also frequently overlook hyperparameter tuning while performing encrypted tra�c

characterization.

Yang et al. [59] developed a payload-based classi�cation method to identify Trans-

port Layer Security (TLS) tra�c by analyzing TLS connection handshake packets

using the Bayesian neural network. They captured the campus network tra�c and

collected in total 328,155 packets and categorized into web, mail, �le and VoIP pro-

tocols. They labelled tra�c
ows using port numbers corresponding to classi�ed

applications. Three parameters in the clientHello message viz cipher suites, com-

pression methods, and they used TLS extensions to extract 392 features per
ow.

Authors claimed that their proposed method outperformed existing payload-based

26

classi�cation methods with 99% accuracy.

Zhang et al. in [60] used HTTP/2 based website �ngerprinting technique to classify

encrypted TLS tra�c based on local request and response sequence (LRRS) feature

set. They used deep forest classi�er with 150 �ne-grained extracted features from

LRRS created from size, direction, and the number of packets. The authors divided

the feature set into three parts containing 10, 80 and 60 features, respectively. Also,

they created four tra�c
ow datasets with 12,500 page views include HTTP/1.1 and

HTTP/2 protocols. They compared the results with the results obtained from six

common ML algorithms namely Random Forest, SVM, Decision Tree, KNN, Logistic

regression and Na•�ve Bayes. The authors proved that their method worked better,

especially when dealing with tra�c from pages other than the main page. Similarly,

Houser et al. [24] developed a DoT �ngerprinting method to analyze DoT tra�c

generated by visiting websites.

Siby et al. [52] provided a novel approach for website �ngerprinting by analyzing

DoH and DoT tra�c. They used the patterns of encrypted DNS tra�c to create

�ngerprints for each website in their dataset. They made a feature set out of the

captured encrypted HTTPS tra�c which consisted of n-gram representation of the

size of packets with negative numbers indicating packets in the reverse direction. A

random forest classi�er was then applied to identify the website and authors have

shown that with an accuracy of over 80% their novel approach can raise signi�cant

privacy concerns about current encrypted DNS practices. They modelled the tem-

poral patterns of DNS packets and demonstrated that when DNS packets are not

padded, the website �ngerprinting reveals the sensitive websites visited by users.

Furthermore, even if the DNS packets are padded, their method can identify DoT

tra�c con�rming information leakage in DoT packets.

Lotfollahi et al. [32] focused on feature extraction and classi�cation to handle

network tra�c characterization and identify end-user applications. Authors used

27

Stacked AutoEncoder and Convolutional Neural Network for network classi�cation.

They used ISCX VPN-nonVPN dataset, and the model obtained 98% accuracy for

application identi�cation and 93% accuracy for tra�c characterization. Leroux et

al. [29] also worked on the same dataset with ML models based on size and timing

features to �ngerprint VPN and ToR encrypted tra�c. Authors compared their clas-

si�er with the Decision Tree (DT), Random Forest (RF), Logistic Regression (LR),

and Na•�ve Bayes (NB) to show that SAE and CNN are better classi�ers for this

problem.

Patsakis et al. [42] investigated the use of Domain Generation Algorithms (DGAs) to

hide malicious DNS queries in a covert channel. They used Hodrick-Prescott �lter to

classify tra�c generated through several DGAs and studied the possibility of using

DNSCurve and DNSCrypt by botnets to communicate with C&C server. Their work

successfully constructed indicators of compromise (IoCs) even in the covert channel.

They showcase the use of tra�c analysis to provide a lightweight security mechanism

and address future challenges dealing with masqueraded DNS queries.

A Quick UDP Internet Connection (QUIC) protocol based CNN classi�er is devel-

oped by Tong et al. [55] which used
ow-based and packet-based features to identify

some QUIC protocol based Google services with an accuracy of approximately 99%.

Their model �rst used a random forest classi�er for di�erentiating low throughput

services from high throughput services, then a CNN classi�er for multi-class classi�-

cation of video streaming, �le transfer, and Google Play Music. However, the model

su�ered from high run-time of processing and classi�cation due to use of
ow-based

features.

28

2.5 Summary

DoH encrypts the DNS communication between a DNS client and a DNS server

to prevent eavesdropping. The encrypted communication also prevents man-in-the-

middle attack by creating covert channels. DoH is still an evolving concept with many

pros and cons. Since covert channels are hard to detect, DoH faces the criticism from

a section of researchers. This chapter discussed the working of DoH protocol and

available con�guration scenarios in which DoH can be deployed in a local network.

It can be concluded that none of the deployment scenarios is the best and suitable

for capturing all types of network tra�c.

DNS protocol is vulnerable to several attacks such as DNS forgery, covert DNS

channels, DNS rebinding, network reconnaissance, and denial of service. Similarly,

DoH is also exploitable by some of these attacks such as covert DNS channels. DoH

also has privacy issues and is prone to data ex�ltration attacks. Several attempts

have been made in the past to identify covert channels so that data ex�ltration

initiated by the adversaries can be detected.

Although encrypted and DNS tunneled tra�c characterization has received tremen-

dous research focus as evident from review and survey papers in the past due to

its implications on tra�c shaping,
ow control and congestion control; DoH tra�c

characterization is still an evolving concept. The research presented in this thesis

attempts to detect and characterize DoH tra�c in an online environment.

Since many of the DNS tunnel detection studies rely on the content of the DNS

packets (most notably con�guration of the sub-domains used in DNS requests), we

can not use their methods for detecting the DoH tunnels. Furthermore, even though

encrypted tra�c characterization is a well-researched area, the methods used in this

area of research are mostly used to �ngerprint websites or detect network traces from

di�erent applications. To use these methods for DoH tunnel detection, we need to

tune these methods for DoH tra�c and di�erentiate between malicious-DoH and

29

benign-DoH tunnel tra�c. This chapter also coveredCont1 and Cont2, as de�ned

is 1.2.

30

Chapter 3

Proposed Framework

In the previous chapter, I presented an overview of the DoH protocol and its security

shortcomings based on previous and current research. One of these security issues is

the covert communication through DoH protocol, otherwise called the DoH tunnel.

It was shown that even though DNS tunnels have been around for a long time

and there are plenty of research projects around how they can be mitigated, DoH

tunnels are reasonably new and resistant to many of these detection and mitigation

techniques.

The main problem introduced by DoH tunnels arises from the encryption included in

the DoH protocol, which prevents the use of many DNS tunnel mitigation techniques

that rely on the contents of network packets to detect DNS tunnels. There is another

challenge with the detection of DoH tunnels also. Unlike the DNS protocol that

traditionally uses port 53 to transport the data over the network, DoH protocol

works as a higher-level protocol on top of the HTTPS protocol, which uses port 443.

It means while DNS packets are easily �lterable on the network by their destination

port and protocol, DoH packets (and connections) are harder to detect since they

are virtually indistinguishable from non-DoH HTTPS tra�c.

This chapter details my proposed two-layered detection framework for the DoH tra�c

31

and the DoH tunnels. The proposed framework is used to classify DoH and Non-DoH

tra�c in the �rst layer and characterize DoH tra�c into benign-DoH and malicious-

DoH in the second layer with the detailed description of individual components,

feature set used, and classi�cation technique. The DoH characterization presents

a label used to indicate that the DoH protocol is being abused to create covert

communication channels.

3.1 Overview

To successfully mitigate DoH tunnels, �rst, we have to detect them in the network

tra�c. The detection framework described in this thesis consists of a two-layer

architecture. Since the DoH tra�c is indistinguishable from other types of HTTPS

tra�c, the �rst layer of this framework classi�es the input network tra�c and labels

the network
ows as DoH or Non-DoH.

Furthermore, layer 2 of the proposed framework characterizes those
ows from the

tra�c that have been marked as DoH. This characterization distinguishes benign-

DoH, which is the tra�c created by the intended uses of DoH (Domain resolution),

and malicious-DoH, which is the tra�c created by the DoH tunnels that abuse the

DoH protocol to create covert communication channels. Figure 3.1 described the

proposed abnormal DoH tra�c detection methodology in consisting of three modules:

1) Data pre-processing module, 2) Feature extraction module, and 3) Classi�cation

module. Each of these modules is further discussed in the following chapters.

To cover all parts of this framework, I designed and developedDoHlyzer, an auto-

mated tool written Python which is publicly available on GitHub [21]. This tool

contains several modules that would help us in the implementation and analysis of

the proposed framework:

1. DoHDataCollector : This module uses automation tools such as Fabric li-

32

brary and SSH to control several virtual machines for data collection. By

remotely controlling these machines, I run prede�ned scenarios based on our

needs to collect the needed data. Each of these scenarios consists of running

various tools to generate the tra�c and capture them usingtcpdump, which is

network tra�c capturing and analysis tool. This module corresponds with the

data capture and pre-processing module of the framework, which is shown in

the top box in Figure 3.1.

2. DoHMeter : Following the collection of the data by the Collector module,

the Meter module extracts the necessary features from the collected tra�c by

utilizing the Scapy library in Python. Even though this module is used after

the Collector module, it can also work independently and capture online tra�c

from the host for feature extraction. This module can work with two modes,

one for extracting the statistical features in the form of a CSV �le and the

other for extracting time-series features that are saved in several JSON �les.

This module corresponds with the second module of the proposed framework,

the feature extraction module.

3. DoHAnalyzer : This module uses the extracted time-series features from

the tra�c dataset, to create and test deep learning classi�ers capable of binary

classi�cation of time-series input. To create such classi�ers, this module utilizes

Keras and TensorFlow libraries in Python. This module corresponds with the

third module of the proposed framework, the classi�cation and characterization

module.

4. DoHVisualizer : This module uses Matplotlib library in Python to visualize

the extracted time-series features to provide a graphical representation of the

data.

33

Figure 3.1: DoH tra�c classi�cation and characterization architecture

3.2 Data capture and pre-processing module

To create the necessary classi�ers for this detection framework, there needs to be a

dataset available to train and test the classi�ers successfully. Since there has not been

a great focus on DoH tra�c analysis in the literature, no publicly available dataset

was found that could be used for this research. To overcome this problem, a new

dataset was created for this thesis. This dataset contains HTTPS tra�c captured

using various tools (detailed in Chapter 4).

As part of the DoHlyzer package, I developed the collector module in Python to help

us with running these tools, generating the desired network tra�c and collecting it

34

in my dataset. Due to the need for having a comprehensive dataset which would

require repeatedly running various tools with di�erent settings, and also to isolate

these experiments, I chose to run my data collection on virtual machines. The

collector module manages these experiments by controlling these machines by SSH

protocol using Fabric library in Python. The experiments used for data collection are

de�ned in scenarios that the collector module interprets and runs on the machines.

These scenarios indicate the tools and the settings needed for generating the data.

Collection of the tra�c is done by tcpdump and then the PCAP �les are collected

on the primary host (the host running theDoHDataCollector module).

The HTTPS tra�c captured in this dataset contains all di�erent types of tra�cs

that I work with in this research. The dataset includes non-DoH HTTPS tra�c,

benign-DoH tra�c created in the process of domain resolution and tra�c made by

DoH tunneling tools. In the next step, the data pre-processing process identi�es

every network tra�c
ow captured from the encrypted network tra�c. RFC 2722,

titled "Tra�c Flow Measurement: Architecture", de�nes
ow as \a stream of packets

observed by the meter as they pass across a network between two endpoints (or

from a single endpoint), which have been summarized by a tra�c meter for analysis

purposes"[49].

In this thesis, several values have been used to derive
ows from the tra�c. These

values are source IP, destination IP, source port, destination port and protocol. In

other words, the packets in the dataset are grouped by these values, with each packet

belonging to the
ow that is indicated by these values. Since the protocol (TCP) and

the destination port (443) remain the same for all the
ows (because the captured

tra�c only includes HTTPS tra�c), these two values are e�ectively ignored.

The
ows in the dataset are labeled as DoH or Non-DoH based on the destina-

tion IP address of
ows. This is possible because all of the DoH networks
ows

included in the dataset have the destination IP address of a DoH server (a server

35

that understands the DoH protocol and accepts DoH connections). DoH
ows are

also distinguished by tools used for generating them. Additionally, DoH
ows cre-

ated by simulating web browsing activity are marked as benign-DoH while the
ows

captured using DoH tunnels are marked as malicious DoH. While DoH protocol may

theoretically be abused by attackers in a variety of ways, I used "malicious-DoH"

label for the DoH tunneling network tra�c which can be used by malicious actors

to create covert channels.

3.3 Feature extraction and selection module

Feature extraction module is used to extract necessary features for classi�cation and

characterization from each
ow. The major categories of features used for feature

extraction, as evident from the reviewed literature, are statistical features and time-

series features.DoHMeter reads captured tra�c in PCAP format which is created

by tools such astcpdumpor Wireshark and extract the features. It can also capture

real-time packets from the online tra�c of any of the host's network interfaces. The

mode of input can be speci�ed by-n <iface> for capturing online tra�c (<iface>

being the network interface used) or-f <pcap file> for reading packets from a

PCAP �le. Online tra�c captures should be interrupted manually (by pressing

Ctrl-C).

After creating the tra�c and capturing it, DoHMeter can produce statistical features

from the captured tra�c. In the other language, in this step the meter module

accepts the tra�c captured in the dataset in form of PCAP �les as input and extracts

features for each
ow in the input. These features are then saved into �les to be

further used in the next steps. This module has two di�erent modes for statistical

and time-series features that are further explained in the following sections. I present

a brief overview of these features here and provide the list of features used for this

36

research.

3.3.1 Statistical features

Statistical features are considered powerful for performing network tra�c analyses.

There are several related works on this domain which have used statistical features

such as duration of the
ow and inter-arrival time of packets [16, 28]. Based on

features used by these papers and my experiments, twenty-eight statistical features

has been selected and derived from the captured network tra�c as shown in Table 3.1.

I de�ne some of the typical features below:

� Coe�cient of variation (CV): It is a statistical measure of the relative dispersion

of data points in a data series around the mean. Mathematically,CV = �=� ,

where� and � represent standard deviation and mean, respectively.

� Skew from median: Skewness from median measures the asymmetry of the

probability distribution of a real-valued random variable about its median.

� Skew from mode: Skewness from median measures the asymmetry of the prob-

ability distribution of a real-valued random variable about its mode.

Based on above de�nitions, these three features are computed for packet length,

packet time, and request/response time di�erence.

These statistical features are extracted from the PCAP �les included in the dataset

using the meter module of DoHlyzer package. This is the �rst modes of the meter

module. This mode is activated by using-c switch and extracts statistical features

from the input tra�c. Results are saved in a CSV �le, the path of which should be

speci�ed by the user. Each row in the output CSV �le would specify a
ow in the

input tra�c. The �rst four columns of the CSV �le indicate basic information needed

to identify the
ow: 1) Source IP 2) Destination IP 3) Source Port 4) Destination

Port. The next two columns are the start timestamp and the duration of the
ow.

37

Table 3.1: List of statistical features obtained

Parameter Feature
F1 Number of
ow bytes sent
F2 Rate of
ow bytes sent
F3 Number of
ow bytes received
F4 Rate of
ow bytes received
F5-F12 Packet Length (F5: Mean, F6: Median, F7: Mode, F8:

Variance, F9: Standard deviation, F10: Coe�cient of
variation, F11: Skew from median, F12: Skew from
mode)

F13-20 Packet Time (F13: Mean, F14: Median, F15: Mode,
F16: Variance, F17: Standard deviation, F18: Coe�-
cient of variation, F19: Skew from median, F20: Skew
from mode)

F21-F28 Request/response time di�erence (F21: Mean, F22:
Median, F23: Mode, F24: Variance, F25: Standard
deviation, F26: Coe�cient of variation, F27: Skew
from median, F28: Skew from mode)

The rest of the columns contain the statistical features. This is an example for run-

ning the meter module in its �rst mode: python3 dohlyzer.py -f ./input.pcap

-c ./output.csv

3.3.2 Time-series features

Time-series representation is used to model the network owing to the nature of tra�c

encrypted by TLS protocol in the form of a series of packets transmitted over the

period. The nature of network tra�c is a series of packets transmitting over time, so

we can model a network
ow using a time-series representation of captured tra�c.

Since the tra�c used in this work is encrypted by TLS protocol, the payloads on the

packets would not leak any useful information about the nature of underlying tra�c.

On the contrary, we can use other tra�c shape parameters such as the packet size,

packet direction, and the time di�erence between packets, to infer some information

about the underlying tra�c [60]. I keep the packets that contain TLS application

data and remove insigni�cant packets such as ACK packets with no payload and

38

packets too small to carry data frames. The primary step in my method is to create

packet clumps to reduce the dimensionality of data.

To create these clumps I use the meter module from theDoHlyzer package in its

second mode. This mode is activated by the-s switch and generate a sequence of

clumps saved in JSON format. The output path in this mode should be a directory

containing two subdirectories:doh and ndoh. Each
ow is saved in a �le indicated

by source and destination addresses and ports, in the corresponding subdirectory.

The contents of the �le is a list of sequences. Each sequence is a list of clumps. Each

clump is a JSON object including all the parameters of a clump. This is an example

for running the meter module in its second mode:

#python3 dohlyzer.py -f ./input.pcap -s ./output/

I de�ne a clump of packets as a sequence of one or more consecutive packets of

a network
ow (having the same source and destination) in the same direction to

create a new and concise representation of my data as shown in Figure 3.2.

Figure 3.2: The clumping process

The rationale for this step is to combine these packets to �nd the application traf-

�c scattered between several packets in the process of TLS segmentation and IP

39

fragmentation. These aggregated data points (that I called \packet clumps" in this

thesis) are sometimes referred to as bursts in the literature. A threshold timeout

value for clumps is also considered so that two packets with a greater time di�er-

ence do not end up in the same packet clump. Table 3.2 presents the important

characteristics of clumps, that can be useful in tra�c analyses:

Table 3.2: List of time-series features obtained

Parameter Feature
F1 Size of the clump (sum of packet size in bytes)
F2 Number of packets in the clump
F3 Direction of the clump (incoming or outgoing)
F4 Duration of the clump (time di�erence between the

�rst and last clump)
F5 Inter-arrival time (time di�erence between current and

previous clump)

Each clump C is denoted by 5-tuple characteristics as:

C = hsize; pktCount; direction; duration; interarrivalT ime i

By using the clumping process, a sequence of clumps for any tra�c
ow can be

shown as

S = (C1; : : : ; Cn)

The size of these sequences (n) depends on the network tra�c inside of the
ow. I use

a sliding window with a length of` over this sequence of clumps to generate clump

sequences. Clump sequences that are smaller than the segment size are padded with

empty clumps. If ` is a hyper-parameter that specify the number of clumps in a

segment, the �nal feature setF` extracted from a
ow is represented as:

F` = f (Ci ; :::; Ci + `) j 1 � i < jSj � `g

Finding the best value for` is a trade-o� between accuracy and response time. A

40

smaller ` potentially limits the ability of the classi�er to �nd meaningful patterns in

the tra�c. Thereby, it decreases the accuracy of results and time needed to capture

tra�c. In other words, it helps to detect and discard malicious tra�c earlier. A

bigger ` however potentially increases the accuracy and robustness of the classi�er.

Chapter 5 further focuses on the e�ects of̀ hyperparameter on the performance of

the DoH tunnel detection framework.

3.4 Classi�cation module

I used the classi�cation module to train the classi�er and create a trained model

which is used to distinguish DoH tra�c from non-DoH tra�c at layer 1. After

getting DoH tra�c at layer 1, it is characterized as benign-DoH or malicious-DoH

tra�c at layer 2 (Cont3 covered). Since there are two types of features for each
ow,

I used di�erent classi�ers for each feature set. Each of these classi�ers is trained on

my labeled dataset, so they can be called binary classi�ers. Since my dataset is fully

labeled, I used supervised learning classi�ers in the proposed model. I used Weka,

a prominent machine learning tool, to create and analyze the statistical classi�ers

used in this work, andDoHAnalyzer which is the analyzer module from DoHlyzer

package to create and benchmark the time-series classi�ers[19].

3.4.1 Statistical features classi�er

I use four common machine learning algorithms namely Random Forest (RF), De-

cision Tree (DT), Support Vector Machines (SVM), and Naive Bayes (NB) and two

common deep learning algorithms namely deep neural network (DNN) and convolu-

tional neural network (CNN) to classify statistical representation of
ows captured

at layer 1.

All these classi�ers are capable of classifying encrypted tra�c and have particular

41

characteristics. RF and DT classi�ers create a multitude of decision trees to train

the input data and predict the class of data whereas SVM uses a statistical learning

framework to support a robust prediction method. On the other hand, NB promises

highly accurate results. From the deep learning classi�er's perspective, DNN forms

a neural network by providing a combination of input layers, hidden layers, and

output layers to extract high-quality features from the raw input. Finally, CNN

creates convolutions of various layers to detect complex features from input data.

All these classi�ers are chosen to showcase the diversity of my selection that helped

to obtain the best results. The results of these classi�ers are compared to obtain the

best classi�er for my data. It is imperative to mention here that I usedDoHMeter

to extract features from my dataset before applying statistical classi�ers.

3.4.2 Time-series Classi�er

For classifying time-series representations of my
ows, I pre-processed the dataset

to create clumps of data as explained in the previous subsection. I then used deep

learning classi�ers to generate a model capable of classifying sequences of clumps.

Unlike the statistical features classi�er that uses features calculated from the whole

ow, time-series classi�er can utilize a limited number of clumps to classify the
ow.

Recurrent neural networks such as long short-term memory (LSTM) models have

been shown to work well in classifying time-series data [60]. I used a deep neural

network with four hidden layers (including an LSTM layer at the second hidden

layer) to create my model.

Figure 3.3 shows all the layers of my model for an input of a sequence with 5 clumps

(` = 5). The input layer of this network accepts tuples of (̀; clump size). Since

the clumps always have 5 parameters in them, we can write this as (`; 5). The

second layer is a normal dense layer with the output of (`; 10). The LSTM layer is

the second layer and outputs à � 8 values. In the next dense layer this vector of

42

values get reduced tò � 6 and then a dropout of 0.2 is applied to the output of this

layer. This dropout helps with the regularization of my model by reducing over�tting

phenomenon. The last dense layer has` � 2 nodes and is directly connected to an

output node of 1. All of the layers of this model uses ReLu activation function, except

for the output layer that uses a Sigmond activation function. The model is trained

with an Adam optimizer with default parameters and uses a binary cross-entropy

loss function.

Figure 3.3: Plot of the DNN model with ` = 5

43

LSTM is a special type of recurrent neural network that learns long-term dependen-

cies. They remember information for a long period of time and easily learn to avoid

long-term dependency problem. LSTMs have the ability to add or remove informa-

tion from cell states regulated by logic gates. Since I created sequence of clumps

to classify time-series features, LSTM turns out to be the best �t in my generated

dataset to detect the number of clumps at which the best results are obtained.

I used the analyzer module in myDoHlyzer package for creating and analysing the

LSTM classi�er. This module uses Keras and Tensor
ow libraries to create and

train the necessary classi�er for my framework. This module uses the aggregated

JSON �les created by the meter module that contain clumps sequences to create a

LSTM model. The model is created and benchmarked using the input data. The

results from the benchmark are then written in a JSON �le. There are two options

that should be speci�ed: input path (using--input switch) and output path (using

--output switch). This is a sample command that could be used to run this module:

#PYTHONPATH=../ python3 main.py --input analyzer/sample data/

--output test.json

3.5 Summary

I presented the proposed framework to capture and analyze DoH and HTTPS tra�c

ows. This chapter elaborated the three modules of the proposed framework: (1)

data capture and pre-processing, (2) feature extraction and selection, and (3) classi-

�cation and characterization. This chapter also detailed the classi�cation and char-

acterization module of the proposed framework detects DoH tra�c from non-DoH

tra�c at �rst layer and characterizes DoH tra�c into Benign-DoH and Malicious-

DoH tra�c at second layer.

It discussedDoHLyzer, a tool developed in three modules to capture DoH
ows,

44

extract features and analyze them. The proposed framework collects DoH data by

using DoHDataCollector, �rst module of DoHLyzer. Once the data is captured,

DoHMeter, is used to extract features from the collected
ows.DoHMeter works in

two modes. The �rst mode of the tool extracts statistical features whilst the second

mode extracts time-series features from the
ows collected byDoHDataCollector.

Finally, DoHAnalyzer, the third module of DoHLyzer, is used to analyze the DoH

tra�c and the last module namely DoHVisualizer provides a graphical representation

of the data. This chapter also coveredCont3.

45

Chapter 4

Implementation

This chapter contains the details about the implementation of the proposed frame-

work for the detection of DoH tunnels. First, I give details about the dataset collected

for this thesis. Second, I provide the implementation details of the feature extraction

module based on my developed package, namelyDoHLyzer. Appendix A shows the

step by step installing and execution ofDoHLyzer. Lastly, I explain the classi�cation

module with the details of all the di�erent classi�ers that I use in this thesis.

4.1 DoH Tunnel Dataset Collection

As mentioned in earlier chapters, I needed to create the necessary dataset for this

work, since there is no publicly available dataset in the literature. The generated

dataset, namedCIRA-CIC-DoHBrw-2020, is publicly available at [3]. It consists

the HTTPS tra�c
ows with two levels of distinct labels (The �rst part of Cont5

covered).

I have DoH and Non-DoH HTTPS tra�c in the �rst layer, and the next layer will

segregate the DoH tra�c as Benign-DoH and Malicious-DoH. Although malicious

tra�c can be tunneling as well as non-tunneling, I generated only tunneled malicious

tra�c for this research. I used a variety of tools to simulate network activity to

46

generate these
ows. Figure 4.1 shows the overall scheme of the network model used

for the dataset collection.

Figure 4.1: Overall view of the dataset collection network

Table 4.1 lists the most important source and destination IPs on the dataset. The

public DoH IPs belong to the four public DoH providers used in the data collection:

1) AdGuard 2) Cloud
are 3) Google DNS 4) Quad9.

4.1.1 Capturing Web Browsing Network Activity

Since this dataset needs to contain all types of tra�c and my DoH tunnel detection

framework would encounter in its input tra�c, I need to include the non-DoH HTTPS

tra�c also. This type of tra�c can be generated by simulating web browsing activity

47

Table 4.1: IP address used for creating the dataset

Public DoH IP addresses

1.1.1.1
8.8.4.4
8.8.8.8
9.9.9.9
9.9.9.10
9.9.9.11
176.103.130.131
176.103.130.130
149.112.112.10
149.112.112.112
104.16.248.249
104.16.249.249

Source IP used to connect to websites (Google Chrome) 192.168.20.191

Source IPs used to connect to websites (Mozilla Firefox)
192.168.20.111
192.168.20.112
192.168.20.113

Source IPs used to create DoH tunnels

192.168.20.144
192.168.20.204
192.168.20.205
192.168.20.206
192.168.20.207
192.168.20.208
192.168.20.209
192.168.20.210
192.168.20.211
192.168.20.212

that generally uses HTTPS protocol for data transfer. By using DoH-enabled web

browsers, I could capture the benign-DoH tra�c that is generated during browsing

sessions also.

To simulate web browsing network activity, I captured HTTPS tra�c from web

browsers when visiting a series of top 10k Alexa websites [2]. Since the lazy loading

of data is common in the current web ecosystem, I used simple tools, such as curl,

that only load the main URL. These tools ignore the heavy parts such as the media

and other requests that the page may make using AJAX and WebSockets. I used

both Mozilla Firefox and Google Chrome as the two most popular web browsers.

The web browsers were con�gured to use various public DoH resolvers to prevent

biases in the dataset. My web browsing dataset generation was implemented as a

48

script in Python. I used the Selenium library, a front-end testing tool, in my Python

script to communicate with the web browsers.

To connect to Firefox, I also used GeckoDriver, which is an intermediary between

Firefox and tools that interacts with Firefox. Since I did not need to interact graph-

ically with the web browser, I used a headless Firefox process that does not bring

up the GUI. This would help to reduce the overhead of running many web browsers

in my simulations, which increased the performance of the data capturing module.

Furthermore, I set up Firefox in a way that used DoH instead of DNS, so that all the

name resolution generated tra�cs are DoH and could be captured easily. Similarly,

for Google Chrome, I used chrome driver to communicate with the browser. As with

Mozilla Firefox, necessary con�gurations were set in Google Chrome to ensure name

resolution happens through DoH protocol (using various public DoH resolvers).

The classi�cation module only works with the encrypted tra�c created by HTTPS

protocol which uses the destination port 443. Every
ow in the captured HTTPS

network tra�c is analyzed, and information is collected in a tuple containing <source

IP address, destination IP address, source port, destination port and protocol>.

Since protocol (HTTPS) and destination port (TCP 443) remains the same for all

the
ows, they are not considered while labeling the dataset. Therefore, every
ow

can only be labeled as DoH or non-DoH according to the source IP address, source

port and/or destination IP address. Since the IP of DoH resolvers used in this

experiment is known and those IPs are not used in other connections that are non-

DoH, I can safely label every
ow with a destination IP of the used DoH resolvers,

as DoH tra�c. All other HTTPS
ows found in the tra�c are labeled as non-DoH

tra�c. To ensure there are no outside in
uences on the data, all of the mentioned

operations are done on VMs with no other signi�cant HTTPS tra�c. Algorithm 1

presents the capturing steps of the web browsing HTTPS tra�c.

49

Algorithm 1 Data capture

1: procedure Capture (url f ile; doh ips)

2: for each doh resolver in doh ips do

3: execute tcpdump

4: con�gure browser to usedoh resolver to resolve host names

5: for each url in url f ile do

6: t 5 + Rand � 5

7: open URL in browser

8: Sleep (t)

9: if PCAP �le size > 5GB then

10: break

11: end if

12: end for

13: end for

14: end procedure

4.1.2 Capturing DoH Tunnel Network Activity

The malicious DoH part of the dataset is generated by a combination of tools used to

create DoH tunnels as further detailed in this section. Tra�c generated by all these

tools is captured for pre-processing and training the classi�ers in the next steps.

To create the malicious records of my dataset, I deployed a network that can be

used to simulate DoH tunneling scenarios. This is achieved by setting up a domain,

setting my authoritative server as the nameserver for that domain, and using DoH

requests/responses to carry data between client and server.

An essential issue in the process of capturing DoH tunnel data was �nding the

necessary DoH tools able to create su�cient tunneling tra�c. Since the DoH protocol

is backwards compatible with DNS authoritative nameservers, I used the existing

50

DNS tunneling tools to setup my authoritative server. For the client, I used a DoH

proxy to encapsulate every DNS requests received by the client into a DoH connection

with a DoH Server and relay the response it received from the DoH server to the client

as DNS records. Data is captured between the DoH proxy and DoH server. This

setup allowed us to simulate DoH tunnels using various DNS tunneling tools that are

used in the relevant studies[34]. To label the training dataset, these simulations were

done separately in an isolated network so that any tra�c captured can be associated

with the correct label.

The DoHDataCollector (The �rst module of DoHLyzer) simulates di�erent DoH

tunneling scenarios and captures the resulting HTTPS tra�c. In each instance of

simulation, a new DoH tunnel is made over the underlying network according to

di�erent parameters used in a scenario such as:

1. DoH Server: Adguard, Cloud
are, Google, Quad9

2. DNS Tunneling Tool: Iodine, DNS2TCP, DNScat2

3. Tunneling Client and Server Con�gurations: Settings such as the delay

between sending requests and DNS record types used.

4. Transmission Rate: Random value between 100 B/s to 1100 B/s

5. Duration

To generate enough data, the clients used in the simulation were run simultaneously

on ten servers, all connecting to a single C2 server posing as a DNS nameserver.

A central controller written in python, deployed on another server, controls the

timing of simulations. This controller reads the scenarios from a con�guration �le

with JSON format that de�nes each of the scenarios and uses SSH to access the

clients and the server remotely to set up the simulation. Each simulation starts by

running the C2 server application (such asIodine) followed by running the client

51

DoH proxies (which wraps DNS communications in a DoH connection) and the C2

client applications. During the simulation, a TCP connection with the speci�ed

transmission rate is tunneled through the C2 connection to generate the DoH tra�c.

I captured the tra�c between the DoH proxy and DoH server usingtcpdump.

Working on all of the captured tra�c, my DoHMeter[21] package was used to extract

statistical and time-series features as mentioned in subsection 3.3 from the PCAP

�les. Table 4.2 presents the details of captured packets and generated
ows for

di�erent browsers and tools on four di�erent DoH servers. A small number of
ows

(n < 50) in captured dataset contained NaN values for some of the features, mostly

because the
ow did not contain enough packets to calculate those features. I deleted

these
ows as part of the data pre-processing/cleaning procedure. I divided the

resulting dataset into the training (80%) and testing (the remaining 20%) sets, to

be used with all the classi�ers discussed in this thesis.

4.2 Feature Extraction

Once the data is captured by usingDoHDataCollector, the next step is to extract

features from the captured DoH
ows. DoHMeter is developed to extract features

and it works in two modes. In the �rst mode, it extracts statistical features whilst

time-series features are extracted in the second mode. This sub-section discusses the

statistical and time-series features extracted in this module.

4.2.1 Statistical Features Extraction

The feature extraction process is done for all of the PCAP �les in the dataset. Since

the output CSV �les are numerous (one CSV for each PCAP), the �nal input of the

classi�ers are created through aggregating relevant CSV �les. I created two CSV

�les (one for each layer) with an extra column in each �le, indicating the label of the

52

Table 4.2: Dataset Details

Browser/Tool DoH
Server

Packets Flows Type

Google Chrome

AdGuard 5609K 105141 HTTPS (Non-DoH and
Benign DoH)

Cloud
are 6117K 132552
Google
DNS

5878K 108680

Quad9 10737K 199090

Mozilla Firefox

AdGuard 4943K 50485
Cloud
are 4299K 90260
Google
DNS

6413K 138422

Quad9 4956K 92670

dns2tcp

AdGuard 1281K 5459 Malicious DoH
Cloud
are 3694K 6045
Google
DNS

28711K 17423

Quad9 8750K 138588

DNSCat2

AdGuard 1301K 5369
Cloud
are 12346K 9230
Google
DNS

48069K 11915

Quad9 19309K 9108

Iodine

AdGuard 3938K 11336
Cloud
are 5932K 14110
Google
DNS

73459K 12192

Quad9 22668K 8975

53

data (DoH/nonDoH for layer 1 and Benign/Malicious for layer 2). The aggregation

of CSV �les is done using theclump aggregator.py which can be found in the main

directory of the DoHMeter module.

4.2.2 Time-series Features Extraction

As already mentioned, the second mode ofDoHMeter is used to extract time-series

features from the captured DoH tra�c
ows. DoHMeter extracted �ve time-series

features which are presented in Table 3.2 in the previous chapter. Clumping process

is used to create packet clumps of DoH tra�c
ows for e�ectiveness of encrypted

tra�c classi�cation (Cont4 covered).

4.2.2.1 Clumping process

To implement the time-series feature mentioned in Subsection 3.3.2, I �rst need to

pre-process the data captured in the dataset and remove the unnecessary packets. My

dataset captured all the encrypted tra�c sent to and received by port 443 (HTTPS)

including TLS handshake packets, TCP ACK packets, TLS application data packets,

and miscellaneous packets such as TCP re-transmissions and TLS alert packets.

The �rst step to pre-process the data is to classify the
ows based on their tra�c

patterns by keeping the unchanged values in encrypted
ows like the size of the

packets, direction of packets, and the time di�erence between packets. I �lter the

packets that contain TLS application data and remove insigni�cant packets such

as HTTP/2 PING frames to analyze noise-resistant application-layer tra�c. The

Second step in pre-processing is to create packet clumps to reduce the dimensionality

of data, as explained earlier.

Algorithm 2 describes this step in detail. Through this process, the input packets get

aggregated to a sequence of clumps. Each clump is essentially a list of consequtive

packets in the
ow that are in the same direction. To prevent unrelated packets

54

from getting into the same clump, there is also a timeout value to make sure the

packets in a clumps are not too far apart. So while consecutive clumps usually are

in the opposite direction of each other, it is possible to have consecutive clumps

with the same direction in the sequence of clumps. The DoHMeter module which is

responsible for extracting these clumps, outputs this sequence of clumps in a JSON

�le after the
ow is �nished through the timeout process explained in Section 4.2.1.

Since there is a JSON �le for each
ow, the output that the DoHMeter creates

from a PCAP �le, would be saved in several JSON �les in the output directory.

Using clump aggregator.py script from the DoHMeter, these JSON �les can be

aggregated into a single JSON �le. To create the input for the next steps of the

experiment (the time-series classi�er), I generate these JSON �les (clump sequences)

for each layer by performing the feature extraction of the relevant parts of the dataset.

I then aggregated these JSON �les to two �les for each layer (each �le for one of the

label). These �les would later be used for the purpose of training and benchmarking

the time-series classifer.

Algorithm 2 The clumping Process
1: procedure Create Clumps (packets)
2: Initiate empty sequenceS
3: currentClump EmptyClump
4: counter 0
5: while counter < packets:length do
6: repeat
7: Append packets[counter] to currentClump
8: counter counter + 1
9: timePassed packets[counter]:time � packets[counter � 1]:time

10: until currentClump:direction 6= packets[counter]:direction or
timePassed > timeout

11: Append currentClump to S
12: currentClump EmptyClump
13: end while
14: return S
15: end procedure

55

4.2.2.2 Visualizing clump sequences

The clump sequences, each corresponding to a network
ow, can be visualized to view

how they can help us di�erentiate between di�erent network
ows. Usually, network

ows are visualized by their rate of transmitting on a plot. Such visualizations are

however not useful for characterizing the tra�c, since they are using a linear scale

axis for time. Using the linear scale axis, we are either limited to plotting a short

time range (100ms) which wouldn't paint a clear picture of the pattern of a
ow or

plotting a large time ranges (10s) where the most of the plot is empty and the parts

showing the tra�c are too crowded since they are showing a lot of packets in a small

area.

The clump sequences generated as a time-series representation are visualized in Fig-

ure 4.2 for the DoH tra�c created by visiting www.facebook.com and www.google.com

in upper pair and lower pair respectively. Each pair shows two di�erent visits on

the same web page. The reason for the redundant visits (and plots) is to show how

the visiting these web pages create slightly di�erent clump sequences of DoH reso-

lution but are still recognizable as being from the same web page. Green bars show

an outgoing clump of packets, and red bars indicate incoming clumps. The y-axis

represents the size of clumps (in bytes) in a logarithmic scale to visualize small and

large clumps on a single plot. In the same fashion, since the time di�erence between

clumps could be between milliseconds to a couple of seconds, all distances between

consecutive bars are also calculated on a logarithmic scale. In other words, although

the x-axis represents time and all the bars are in the right order, only distances

between consecutive bars can be compared with each other.

It is visible in the �gures that using this type of visualization, HTTPS requests and

responses can be detected and compared for the purpose of tra�c characterization.

While in this thesis, these clump sequences are used for detecting and characterizing

DoH tra�c Figure 4.2 suggests that this method could also be used to create DoH

56

(a) (b)

(c) (d)

Figure 4.2: DoH tra�c for Facebook and Google DoH Tra�c

website �ngerprints to detect website visits from encrypted DoH tra�c captured

from a user's network.

4.3 Summary

In this chapter, I discussed the implementation details of the proposed framework.

my dataset was described in two parts. The �rst part of the dataset was created by

simulating web browsing activity using a Python script controlling Google Chrome

and Mozilla Firefox browser instances. These browsers were used to visit Alexa's top

10k websites, and HTTPS network tra�c from these websites and also DoH tra�c

of the browsers were captured as non-DoH and benign-DoH parts of the dataset,

57

respectively. The second part of the dataset was created by deploying various DNS

tunneling tools behind a DoH proxy to create DoH tunneling tra�c. This tra�c was

then captured as malicious-DoH part of my dataset.

I further discussed my feature extraction method using the DoH Meter tool and

how it extracts statistical and time-series features from the captured network tra�c.

For extracting time-series features, I used a process called clumping that involves

aggregating packets by putting consecutive packets with the same direction in the

same clump. DoHMeter tool was used to extract these features and save them

as JSON �les that could be later used for the purpose of training my classi�ers.

Visualization of the clump sequence �les that were saved in JSON format was done

using myDoHVisualizer tool that creates plots visualizing the pattern of tra�c that

a clump sequence indicates. This chapter also coveredCont4 and Cont5 (the �rst

part).

58

Chapter 5

Results and Discussion

This chapter presents the generated dataset and data distribution along with the

signi�cant �ndings and discussion of my research by analyzing the experimentation

results in both layers of the proposed model. In the analysis part, �rst, I focus

on the results of the proposed classi�cation technique for the �rst layer, which is

responsible for detecting DoH
ows. Secondly, I will investigate the results of the

second suggested classi�cation technique for the second layer, that characterizes DoH

ows (Detected in the �rst layer) to two classes of benign-DoH and malicious-DoH

(The second part ofCont5 covered).

5.1 Data Repository and Distribution

I used my generated dataset, namedCIRA-CIC-DoHBrw-2020, to train my classi-

�cation systems and benchmarked them. As noted on Table 4.2, this dataset is a

collection of PCAP �les containing an overall of 1,167,050 tra�c
ows. Of these traf-

�c
ows, 269,557
ows are DoH (both benign and malicious), and the rest (897,492)

are non-DoH. From those
ows labeled as DoH, 19,807
ows are benign-DoH ones,

and the other 249,750
ows are malicious-DoH (created by DoH tunnels). The two

browsers used for generating non-DoH HTTPS and benign-DoH
ows are Google

59

Chrome and Mozilla Firefox. The malicious-DoH
ows were generated using three

DNS tunneling tools, dns2tcp, DNSCat2, and Iodine. Figure 5.1 shows the distribu-

tion of di�erent classes in layer 1 (chart a) and layer 2 (chart b). It is worth noting

the second layer consists a subset of data in the �rst layer, which are the DoH
ows

(both the malicious and the benign DoH tra�c).

(a) (b)

Figure 5.1: Distribution of di�erent classes of tra�c
ows in the dataset

5.2 Layer 1: Classi�cation of HTTPS tra�c
ows

My DoH tunnel detection method was based on a two-layer classi�cation of HTTPS

tra�c. In the �rst layer, which is the focus of this section, I used all of the dataset

ows as the input data for my classi�cation. These
ows are labeled as Non-DoH

HTTPS or DoH. In this layer, the framework tries to detect
ows that are using

the DoH protocol, whether or not they are created for the purpose of DoH covert

communication. This layer of framework could be used as a standalone mechanism

of detecting DoH for other purposes such as blocking this protocol on an enterprise

network.

60

5.2.1 Classi�cation by Statistical Features

The statistical features used in this work for classi�cation are previously explained in

Section 3.3.1. These features are derived from the data rate of the
ows, packet length

series, packet time series, and the series of inter-arrival time of packets (the duration

between outgoing packets and the consecutive incoming packet). The complete list

of these features is included in Table 3.1 from Chapter 3.

The results of the classi�cation of HTTPS tra�c at layer 1 (DoH/non-DoH classes)

using statistical features are presented in Table 5.1. All the standard machine learn-

ing and deep neural network (DNN) and convolutional neural network (CNN) clas-

si�ers use statistical features calculated from the entire
ow. Thus, it is essential

to investigate the duration of these
ows for early detection of DoH tra�c by an

online classi�er. All the classi�ers share a mean delay of 20.393 seconds to detect

whether a
ow can be regarded as DoH. Apparently, Random Forest (RF) and Deci-

sion Tree (DT) produced equivalent classi�cation results with equal precision, recall

and f-score value. It is followed by the support vector machine (SVM) and Naive

Bayes (NB) at 0.877, 0.877 and 0.84 precision, recall and f-score value, respectively. I

also evaluated deep neural network and two-dimensional (2D) CNN on the generated

dataset with 0.97 and 0.98 precision and Recall respectively.

Table 5.1: DoH Tra�c Classi�cation by ML/DL

Classi�er Precision Recall F-Score
Flow Duration (s)

Mean Median

RF 0.993 0.993 0.993

20.393 1.397
DT 0.993 0.993 0.993

SVM 0.877 0.877 0.877

NB 0.84 0.834 0.833

DNN 0.97 0.97 0.97

2D CNN 0.98 0.98 0.98

61

5.2.2 Classi�cation by Time-series Features

As one of the contributions of this thesis, I extracted time-series features from my

data. These features are sequences of data points created by aggregating packets in

the tra�c
ows. Since the packets in the
ows used in this work contain encrypted

tra�c, only secondary properties of the tra�c, such as packet length and packet time,

are used in the creation of these features, as previously mentioned in Section 3.3.2. I

introduced packet clumpsand clump segmentsto �nd patterns in a limited window of

tra�c (instead of the whole duration of tra�c
ow in the case of statistical features)

which in turn reduces detection latency.

I deployed long short-term memory (LSTM) a major Recurrent Neural Network

(RNN) architecture to create a deep learning binary classi�er as discussed in Sec-

tion 3.4.2. Table 5.2 details the results of using the proposed time-series feature set

in combination with LSTM architecture. It gives an ostensible picture of how the

value of all evaluation metrics keeps on escalating with the number of clumps (`)

formed at a concise
ow duration.

Table 5.2: DoH Tra�c Classi�cation by LSTM

` Precision Recall F1-Score
Duration (s)

Mean Median
1 0.877 0.876 0.876 0.081 0.000
2 0.950 0.949 0.949 0.167 0.002
3 0.953 0.951 0.951 0.262 0.010
4 0.983 0.983 0.983 0.366 0.020
5 0.987 0.987 0.987 0.468 0.030
6 0.993 0.993 0.993 0.574 0.047
7 0.996 0.996 0.996 0.675 0.060
8 0.996 0.996 0.996 0.775 0.077
9 0.998 0.998 0.998 0.871 0.091
10 0.998 0.998 0.998 0.964 0.105

I consider the plot in Figure 5.2 to actuate the threshold value for the number of

clumps after which DoH
ows can be classi�ed at layer 1. As we increase the number

of clumps (̀) in the input of my time-series classi�er, the precision of the results get

62

higher. At only one clump, we can see that my classi�er has a frequency of less

than 88%. Using bigrams, trigrams, and n-grams of the clumps, the classi�ers can

use the relation between the clumps to infer the correct class. Thus, the accuracy

goes up with more clumps, although this e�ect plateaus as̀gets closer to 10. It is

observed that after six clumps in layer one the precision hikes beyond 0.99 o�erings

a precision comparable with the most accurate statistical classi�ers.

Figure 5.2: Trend of precision score per di�erent values of` in layer 1

To further analyze the e�ects of clumping process used in my research, I mapped out

a diagram between the number of clumps and distribution of clump segment duration

in the �rst layer in Figure 5.3. With regards to the threshold value`1 � 6 for the

�rst layer, we can derive that a DoH connection can be detected roughly under 0.8

seconds since all the segments with six clumps created from the layer one tra�c

have values less than 0.8 seconds (excluding the statistically insigni�cant outliers).

Of course, for most of the
ows, detection can be done even faster, since the third

quartile of the data shown on the Figure 5.3 have a duration less than 0.3 seconds.

63

Figure 5.3: Distribution of clump sequence duration in layer 1

5.3 Layer 2: Characterization of DoH tra�c
ows

After classifying HTTPS tra�c at layer 1 to two classes of non-DoH and DoH, I

further characterize the DoH tra�c at layer 2 of my framework. In this layer, the

implemented binary classi�ers characterize the DoH tra�c from layer 1 to benign

DoH (which is created by normal DoH resolution of domain names) and malicious

DoH (which is created by DoH tunnels for covert communication).

5.3.1 Classi�cation by Statistical Features

The same feature set and classi�ers from the Section 5.2.1 is used at layer 2 for DoH

tra�c characterization. The results of the characterization of DoH tra�c at layer

2, to benign-DoH and malicious-DoH (DoH tunnels), using statistical features are

shown in Table 5.3. Same as the previous layer, all of the ML/DL classi�ers used for

this layer use statistical features that are calculated on the full duration of the
ow.

The two most precise ML algorithms in layer 1, RF and DT algorithm, also have an

excellent detection rate in layer 2, marked by an f-score of 0.999. Support Vector

Machine and Naive Bayes have a mediocre f-score of 0.884 and 0.832, respectively.

64

The deep neural network and 2D convolutional neural network (CNN) I used also

had 0.98 and 0.99 f-score, which is lower than, but comparable to the f-score of RF

and DT algorithm.

The increased mean
ow duration from 20.393 seconds at layer 1 to 53.924 seconds

at layer 2 indicates that DoH
ows generally last longer compared to other non-

DoH/HTTPS
ows. This is because the DoH protocol uses HTTP/2, which mul-

tiplexes requests and responses on a single long-lasting TCP connection. Because

these statistical classi�ers use features extracted from captured tra�c of the whole

duration of
ows, longer lifetime of DoH
ows signify the limitation of statistical

features in early detection of malicious DoH tra�c.

Table 5.3: DoH Characterization by ML/DL

Classi�er Precision Recall F-Score
Flow Duration (s)

Mean Median

RF 0.999 0.999 0.999

53.924 34.064
DT 0.999 0.999 0.999

SVM 0.89 0.885 0.884

NB 0.836 0.833 0.832

DNN 0.98 0.98 0.98

2D CNN 0.99 0.99 0.99

5.3.2 Classi�cation by Time-series Features

The same time-series feature set and LSTM classi�ers used in Section 5.2.2 is used

at layer 2 to distinguish between malicious-DoH (generated by tunneling activity)

and benign-DoH. The results from DoH tra�c characterization using my time-series

classi�er are shown in Table 5.4.

To �nd an appropriate value for my hyper-parameter`, the number of clumps in the

input, I plotted precision value per` in Figure 5.4.

65

Table 5.4: DoH Characterization by LSTM

` Precision Recall F1-Score
Duration (s)

Mean Median
1 0.825 0.792 0.782 0.164 0.002
2 0.985 0.984 0.985 0.329 0.022
3 0.991 0.991 0.991 0.502 0.05
4 0.995 0.995 0.995 0.685 0.094
5 0.997 0.997 0.997 0.872 0.142
6 0.998 0.998 0.998 1.063 0.203
7 0.997 0.997 0.997 1.26 0.258
8 0.999 0.999 0.999 1.45 0.313
9 0.999 0.999 0.999 1.63 0.373
10 0.999 0.999 0.999 1.803 0.44

Figure 5.4: Trend of precision score per di�erent values of` in layer 2

To have a precision comparable to the best of statistical classi�ers, we need to have

` � 3. Considering the distribution of clump segment duration in layer2, which

is shown in Figure 5.5, such a value for̀ would mean that my characterization

algorithm could detect at least 99% of DoH tunnels in less than 1 second with only

three clumps from the
ow.

66

Figure 5.5: Distribution of clump sequence duration in layer 2

5.4 Summary

In this chapter, I reviewed the contents of my dataset and the distribution of di�erent

classes in each of the two layers of my framework. I also examined the classi�cation

results from both of the layers when using statistical and time-series classi�cation.

In the �rst layer, which is a classi�cation of HTTPS tra�c
ows into Non-DoH and

DoH classes, I investigated the results of various classi�ers using both statistical

and time-series feature sets. In the results of machine learning algorithms using my

statistical features, I found random Forest and decision tree algorithms to provide

the best accuracy for DoH tra�c detection with a precision of more than 99%. My

time-series classi�er, which uses the time-series data, also performed well, when the

number of clumps (̀) in the input was more than 6, having a precision of more than

99%. Plus, unlike the statistical features that are calculated from the whole
ow, my

time-series classi�er uses less than 0.8 seconds of tra�c to detect DoH
ows, most

of the time.

In the second layer, characterization of DoH tra�c, again the Random forest and

67

C4.5 algorithms performed best with> 99% precision in detecting malicious DoH

ows. My time-series classi�er also performed best, when the number of clumps (`)

was more than 3. Here the detection was achieved by the time-series classi�er in less

than 1 second.

Both statistical and time-series classi�ers give excellent results at both layers until

we bring into consideration the fact the nature of DNS request-response pairs which

are extremely short to detect encrypted DoH tra�c. My proposed time-series clas-

si�er can classify and characterize DoH
ows with the same precision as previously

studied statistical classi�ers, while outperforming them in the delay before detection

(less than 1 second). Such a low delay is especially crucial in detection and preven-

tion systems that deal with online tra�c. This shows that my proposed time-series

feature set and the classi�er can be successfully used in online environments to detect

malicious DoH tra�c created by DoH tunnels. This chapter covered the second part

of Cont5.

68

Chapter 6

Conclusions and Future Work

Domain Name System (DNS) is one of the most important protocols of the Internet

that has been widely used since its creation. Over the years, many security vulner-

abilities has been found in the DNS protocol that prompted creation of extensions

and new protocol that would help make DNS more secure. DNS-over-HTTPS (DoH)

protocol is one of these e�orts that help make DNS more private and �x some of the

security issues by encrypting the DNS packets through the HTTPS protocol. While

DoH has been praised for its ease of use and the security improvements it introduces,

it hasn't been comprehensively studied to indicate how much it can help with the

current vulnerabilites of DNS and what new vulnerabilites are there that needs to

be studied.

In this thesis, I did a systematic study of the DNS security vulnerabilities and cre-

ated a taxonomy of possible DNS attacks. Using this taxonomy I studied the e�ects

of DoH on DNS security and analyzed the security aspects of DoH protocol. One

of the most important security concerns regarding DoH protocol is covert commu-

nications through DoH. These kinds of communications in DNS protocol are called

DNS tunnels and work by encoding data in DNS requests and responses. DoH pro-

tocol makes detection of DNS tunnels a concern since current DNS tunnel detection

69

methods usually rely on deep packet inspection strategies that are impossible when

dealing with the encryption in DoH protocol.

I presented the exploitation of DNS protocol to create covert channels by tunnel-

ing data through DoH connections. DoH was successfully deployed through web

browsers and DNS tunneling tools to generate and capture benign and malicious

DoH
ows along with encrypted tra�c. I created a dataset with more than 1 mil-

lion records (tra�c
ows) by capturing the network activity generated through these

scenarios. My dataset contains non-DoH HTTPS tra�c, benign-DoH tra�c created

by DoH domain resolution and malicious-DoH tra�c created by DoH tunnels. I

then used statistical features to detect DoH connections and malicious-DoH activity

(DoH tunneling) in a two-layered binary classi�cation approach where the �rst layer

distinguishes DoH tra�c from non-DoH tra�c and the second layer characterizes

malicious and benign DoH
ows. I demonstrated that malicious-DoH tra�c can be

accurately detected by using the proposed two-layer binary classi�cation architecture

with a precision of more than 99% when using machine learning algorithms such as

Decision Tree (DT) and Random Forest (RF).

Moreover, I dealt with latency as a signi�cant constraint when analyzing DoH

request-response
ows. I showed that my packet aggregation method called the

clumping process facilitated early analysis of tra�c allowing to create time-series

classi�ers capable of timely detection of DoH tra�c while retaining the accuracy of

statistical classi�ers with more than 99% precision when using sequences of more

than 6 clumps. My time-series classi�er was shown to be able to detect DoH
ows in

at least 99% of instances in less than 0.8 seconds. My time-series classi�er were also

capable of detecting DoH tunnels with more that 99% precision in under 1 seconds

in 99% of the instances with using only 3 clumps of the tra�c
ow.

70

6.1 Future Work

Based on the listed challenges in Section two and some limitation in my implemen-

tation, these are my future works:

� DNS padding is one of the extensions of DNS protocol that allows adding

various amounts of padding to DNS packets. This padding may a�ects the

accuracy of my framework, since it will change the size of DoH packets if DoH

ows. Adversaries using DoH tunnels may use di�erent padding strategies that

can help them disguise their tra�c as benign-DoH or even hide the fact that

they are using DoH protocol.

� The DoH tunnel network tra�c used in this work were created by passing DNS

tunnel tra�c through a DoH proxy. This type of tra�c may have limitations

compared to DoH tunnels that were created by tools that are capable of using

DoH protocol themselves. For example, such a tool may use more than 1

connection or control the shape of the network tra�c by introducing delays to

create more unpredictable tra�c patterns that are harder to detect.

� My clumping process and the resulting time-series classi�ers could be used

to investigate information leakage in DoH protocol. An example of this phe-

nomenon would be detecting web page visits using the DoH �ngerprint that

web site create by loading resources from various domains that would lead to

a predictable sequence of DNS lookups that could be detected in DoH tra�c.

� Other DNS-over-Encryption protocols such as DoT (DNS-over-TLS) are not

studied in this thesis. These protocols may have advantages and disadvan-

tages in comparison with DoH in regards to DNS tunnels. The e�ectiveness of

my two-layer detection framework when dealing with other protocols could be

further investigated.

71

� There might be some other areas of DoH protocol that still inherit DNS vul-

nerabilities. Various DNS
ood attacks may still occur in DoH infrastructure

where detection is harder due to encryption. Also the computational overhead

of DoH protocol may introduce additional challenges to circumventing these

attacks.

72

Bibliography

[1] A New Needle and Haystack: Detecting DNS over HTTPS Usage,

https://www.sans.org/reading-room/whitepapers/dns/

needle-haystack-detecting-dns-https-usage-39160 , Last accessed

April 27, 2020.

[2] Alexa, Last accessed December 10, 2019.

[3] Mohammadreza MontazeriShatoori , Logan Davidson, Gurdip Kaur, and Arash

Habibi Laskhari, CIRA-CIC-DoHBrw-2020, 2020.

[4] Donald E. Eastlake 3rd,Domain Name System Security Extensions, RFC 2535,

March 1999.

[5] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescap �e,

Mobile encrypted tra�c classi�cation using deep learning: Experimental

evaluation, lessonslearned,and challenges, IEEE Transactions on Network and

Service Management16 (2019), no. 2, 445{458.

[6] Mouhammd Al-kasassbeh and Tariq Khairallah,

Winning tactics with DNS tunnelling, Network Security 2019 (2019), no. 12,

12{19.

[7] Derek Atkins and Rob Austein,Threat analysis of the domain name system

(DNS), RFC 3833, August 2004.

73

[8] Kevin Borgolte, Tithi Chattopadhyay, Nick Feamster, Mihir Kshirsagar, Jor-

dan Holland, Austin Hounsel, and Paul Schmitt,How DNS over HTTPS is

reshapingprivacy, performance,and policy in the internet ecosystem, Perfor-

mance, and Policy in the Internet Ecosystem (July 27, 2019) (2019).

[9] Kenton Born and David Gustafson,Detecting DNS tunnels using character

frequencyanalysis, arXiv preprint arXiv:1004.4358 (2010).

[10] Timm B•ottger, Felix Cuadrado, Gianni Antichi, Eder Le~ao

Fernandes, Gareth Tyson, Ignacio Castro, and Steve Uhlig,

An Empirical Study of the Cost of DNS-over-HTTPS, Proceedings of the

Internet Measurement Conference, 2019, pp. 15{21.

[11] Anna L Buczak, Paul A Hanke, George J Cancro,

Michael K Toma, Lanier A Watkins, and Je�rey S Chavis,

Detection of tunnels in PCAP data by random forests, Proceedings of the

11th Annual Cyber and Information Security Research Conference, 2016,

pp. 1{4.

[12] Kimo Bumanglag and Houssain Kettani,On the impact of DNS Over HTTPS

paradigm on cyber systems, 2020 3rd International Conference on Information

and Computer Technologies (ICICT), IEEE, 2020, pp. 494{499.

[13] Sebastiano Di Paola and Dario Lombardo,Protecting against DNS re
ection

attacks with Bloom �lters, International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment, Springer, 2011, pp. 1{16.

[14] Christian J Dietrich, Christian Rossow, Felix C Freiling, Herbert Bos,

Maarten Van Steen, and Norbert Pohlmann,On Botnets that use DNS for

Command and Control, 2011 seventh european conference on computer network

defense, IEEE, 2011, pp. 9{16.

74

[15] Michael Dooley and Timothy Rooney,DNS Security Management, John Wiley

& Sons, 2017.

[16] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,

and Ali A Ghorbani, Characterization of encrypted and VPN tra�c using

time-related, Proceedings of the 2nd international conference on information

systems security and privacy (ICISSP), 2016, pp. 407{414.

[17] Wendy Ellens, Piotr _Zuraniewski, Anna Sperotto, Harm Schotanus, Michel

Mandjes, and Erik Meeuwissen,Flow-based detection of DNS tunnels, IFIP In-

ternational Conference on Autonomous Infrastructure, Management and Secu-

rity, Springer, 2013, pp. 124{135.

[18] Paal Engelstad, Boning Feng, Thanh van Do, et al.,

Detection of DNS tunneling in mobile networks using machine learning, Inter-

national Conference on Information Science and Applications, Springer, 2017,

pp. 221{230.

[19] E. Frank, M. A. Hall, G. Holmes, R. Kirkby, B. Pfahringer, and I. H. Wit-

ten, Weka: A machine learning workbench for data mining., pp. 1305{1314,

Springer, 2005.

[20] Steve Friedl,An Illustrated Guide to the Kaminsky DNS Vulnerability, http:

//unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html , 2008.

[21] GitHub, DoHMeter, https://github.com/ahlashkari/DOHlyzer/tree/

master/DoHMeter, 2019.

[22] Paul E. Ho�man and Patrick McManus , DNS Queries over HTTPS (DoH) ,

RFC 8484, October 2018.

[23] Austin Hounsel, Kevin Borgolte, Paul Schmitt, Jordan Holland, and Nick Feam-

ster, Analyzing the costs(and bene�ts) of DNS, DoT, and DoHfor the modern

75

web, Proceedings of the Applied Networking Research Workshop, 2019, pp. 20{

22.

[24] Rebekah Houser, Zhou Li, Chase Cotton, and Haining Wang,

An investigation on information leakage of DNS over TLS, Proceedings of

the 15th International Conference on Emerging Networking Experiments And

Technologies, 2019, pp. 123{137.

[25] Zi Hu, Liang Zhu, John Heidemann, Allison

Mankin, Duane Wessels, and Paul E. Ho�man,

Speci�cation for DNS over Transport Layer Security (TLS) , RFC 7858,

May 2016.

[26] David Huistra, Detecting re
ection attacks in DNS
ows, 19th Twente Student

Conference on IT, 2013.

[27] Warren Kumari, Barry Leiba, Suzanne Woolf, Joe Abley, Tim April, Paul

Ebersman, Ondrej Filip, Geo� Huston, Jacques Latour, John Levine, et al.,

The Implications of DNS over HTTPS and DNS over TLS, (2020).

[28] Arash Habibi Lashkari, Gerard Draper Gil, Mohammad Saiful Islam Mamun,

and Ali A Ghorbani, Characterization of tor tra�c using time based features,

ICISSP 2017 - Proc. 3rd Int. Conf. Inf. Syst. Secur. Priv., vol. 2017-Janua,

SCITEPRESS - Science and Technology Publications, 2017, pp. 253{262.

[29] Sam Leroux, Steven Bohez, Pieter-Jan Maenhaut, Nathan Meheus, Pieter

Simoens, and Bart Dhoedt,Fingerprinting encryptednetwork tra�c typesusing

machinelearning, NOMS 2018-2018 IEEE/IFIP Network Operations and Man-

agement Symposium, IEEE, 2018, pp. 1{5.

[30] Chang Liu, Liang Dai, Wenjing Cui, and Tao Lin,

A Byte-level CNN Method to Detect DNS Tunnels, 2019 IEEE 38th Interna-

76

tional Performance Computing and Communications Conference (IPCCC),

IEEE, 2019, pp. 1{8.

[31] Jingkun Liu, Shuhao Li, Yongzheng Zhang,

Jun Xiao, Peng Chang, and Chengwei Peng,

Detecting DNS tunnel through binary-classi�cation based on behavior features,

2017 IEEE Trustcom/BigDataSE/ICESS, IEEE, 2017, pp. 339{346.

[32] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade,

and Mohammdsadegh Saberian,Deeppacket: A novel approachfor encrypted

tra�c classi�cation usingdeeplearning, Soft Computing24 (2020), no. 3, 1999{

2012.

[33] Chaoyi Lu, Baojun Liu, Zhou Li, Shuang Hao, Haixin Duan, Mingming Zhang,

Chunying Leng, Ying Liu, Zaifeng Zhang, and Jianping Wu,An end-to-end,

large-scalemeasurementof DNS-over-Encryption: How far havewecome?, Pro-

ceedings of the Internet Measurement Conference, 2019, pp. 22{35.

[34] Alessio Merlo, Gianluca Papaleo, Stefano Veneziano, and Maurizio Aiello,A

comparative performanceevaluation of DNS tunneling tools, Computational

Intelligence in Security for Information Systems, Springer, 2011, pp. 84{91.

[35] Roger Meyer,Impact of DNS over HTTPS (DoH) on DNS Rebinding Attacks,

https://research.nccgroup.com/2020/03/30/

impact-of-dns-over-https-doh-on-dns-rebinding-attacks/ , 2020.

[36] Paul Mockapetris, Domain names - concepts and facilities , RFC 1034, Novem-

ber 1987.

[37] Cathal Mullaney, Morto worm sets a (DNS) record, http://www.symantec.

com/connect/blogs/morto-worm-sets-dns-record , 2011.

77

[38] Asaf Nadler, Avi Aminov, and Asaf Shabtai,Detection of malicious and low

throughput data ex�ltration over the DNS protocol, Computers & Security80

(2019), 36{53.

[39] Nccgroup, Singularity of Origin, https://github.com/nccgroup/

singularity , 2020.

[40] Lucas Nussbaum, Pierre Neyron, and Olivier Richard,

On robust covert channels inside DNS, IFIP International Information Se-

curity Conference, Springer, 2009, pp. 51{62.

[41] Fannia Pacheco, Ernesto Exposito, Mathieu Gineste, Cedric Baudoin, and Jose

Aguilar, Towardsthe deploymentof machinelearningsolutionsin network tra�c

classi�cation: A systematicsurvey, IEEE Communications Surveys & Tutorials

21 (2018), no. 2, 1988{2014.

[42] Constantinos Patsakis, Fran Casino, and Vasilios Katos,

Encrypted and covert DNS queries for botnets: Challenges and countermeasures,

Computers & Security88 (2020), 101614.

[43] Nicholas A. Plante, Practical domain name system security: A survey of

common hazards and preventative measures,http://www.infosecwriters.

com/text_resources/pdf/dns-security-survey.pdf , pp. 1{20.

[44] Cheng Qi, Xiaojun Chen, Cui Xu, Jinqiao Shi, and Peipeng Liu,

A bigram based real time DNS tunnel detection approach, Procedia Computer

Science17 (2013), 852{860.

[45] Daan Raman, Bjorn De Sutter, Bart Coppens, Stijn Volckaert,

Koen De Bosschere, Pieter Danhieux, and Erik Van Buggenhout,

DNS tunneling for network penetration, International Conference on In-

formation Security and Cryptology, Springer, 2012, pp. 65{77.

78

[46] Shahbaz Rezaei and Xin Liu,Deeplearning for encrypted tra�c classi�cation:

An overview, IEEE communications magazine57 (2019), no. 5, 76{81.

[47] Scott Rose, Matt Larson, Dan Massey, Rob Austein, and Roy Arends,

DNS Security Introduction and Requirements , RFC 4033, March 2005.

[48] Thijs Rozekrans, Matthijs Mekking, and Javy de Koning,

Defending against DNS re
ection ampli�cation attacks, University of Am-

sterdam System & Network Engineering RP1 (2013).

[49] Dr. Greg R. Ruth, Nevil Brownlee, and Cynthia G. Mills,

Tra�c Flow Measurement: Architecture, RFC 2722, October 1999.

[50] Lior Sha�r, Yehuda Afek, and Anat Bremler-Barr,

NXNSAttack: Recursive DNS Ine�ciencies and Vulnerabilities, arXiv preprint

arXiv:2005.09107 (2020).

[51] Stephen Sheridan and Anthony Keane,Detection of DNS Based Covert Channels,

In Proceedings of the 14th European Conference on Cyber Warfare and Security

(ECCWS), University of Hertfordshire, Hat�eld, UK (2015), 1{9.

[52] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and

Carmela Troncoso,Encrypted DNS{> privacy? a tra�c analysisperspective,

arXiv preprint arXiv:1906.09682 (2019).

[53] Sandra Siby, Marc Juarez, Narseo Vallina-Rodriguez, and Carmela Troncoso,

DNS Privacy not so private: the tra�c analysis perspective, (2018).

[54] Sooel Son and Vitaly Shmatikov,The hitchhiker's guideto DNScachepoisoning,

International Conference on Security and Privacy in Communication Systems,

Lecture Notes of the Institute for Computer Sciences, Social Informatics and

Telecommunications Engineering, Springer, Berlin, Heidelberg50 (2010), 466{

483.

79

[55] Van Tong, Hai Anh Tran, Sami Souihi, and Abdelhamid Mellouk,A novelQUIC

tra�c classi�er basedon convolutionalneuralnetworks, 2018 IEEE Global Com-

munications Conference (GLOBECOM), IEEE, 2018, pp. 1{6.

[56] Jeroen Wijenbergh, Veelasha Moonsamy, Roland van Rijsdijk-Deij, and DWC

Dani •e l Kuijsters, Performance comparison of DNS over HTTPS to

unencryptedDNS, (2019).

[57] First Kemeng Wu, Second Yongzheng Zhang, and Third Tao Yin,

CLR: A Classi�cation of DNS Tunnel Based on Logistic Regression, 2019

IEEE 38th International Performance Computing and Communications

Conference (IPCCC), IEEE, 2019, pp. 1{1.

[58] Kui Xu, Patrick Butler, Sudip Saha, and Danfeng Yao,

DNS for massive-scale command and control, IEEE Transactions on De-

pendable and Secure Computing10 (2013), no. 3, 143{153.

[59] Jiwon Yang, Jargalsaikhan Narantuya, and Hyuk Lim,Bayesianneural network

based encrypted tra�c classi�cation using initial handshake packets, 2019

49th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks{Supplemental Volume (DSN-S), IEEE, 2019, pp. 19{20.

[60] Ziqing Zhang, Cuicui Kang, Gang Xiong, and Zhen Li,Deepforest with LRRS

feature for �ne-grained website �ngerprinting with encrypted SSL/TLS, Pro-

ceedings of the 28th ACM International Conference on Information and Knowl-

edge Management, 2019, pp. 851{860.

80

Appendix A

Using DoHlyzer package

A.1 Requirements

This appendix o�ers the necessary steps to download and use the DoHlyzer package

on Ubuntu and Ubuntu-based OSes.

To download and run this package, we �rst need to install some prerequisite pack-

ages:

sudo apt install python3-venv python3-pip git

To download the DoHlyzer package you'd need to access the DoHlyzer repo on

GitHub. You could download the package by cloning it using git:

git clone https://github.com/ahlashkari/DoHlyzer.git

cd DoHlyzer

Now we need to create a virtual environment for Python using venv and install

the necessary Python packages, that are listed inrequirements.txt , in there: #

python3 -m venv .venv

. .venv/bin/activate

pip3 install -r requirements.txt

81

A.2 DoH Meter Module

To use the meter module, we used a test �le namedtest.pcap containing both DoH

and non-DoH network tra�c.

cd meter

tcpdump -w test.pcap # If you want to use tcpdump to create a test PCAP

PYTHONPATH=.. python3 dohlyzer.py # This command will result in an error

Figure A.1: Running meter module to see the help text

As you can see in Figure A.1, we need to indicate a few options for running meter

module.

82

A.2.1 Extracting Statistical Features

Here we use-c switch to extract statistical features. We can see this in Figure A.2:

PYTHONPATH=.. python3 dohlyzer.py -f ./test.pcap -c output.csv

Figure A.2: Running meter module to extract statistical features

The statistical features are saved inoutput.csv as we indicated in the command

(See Figure A.3).

83

Figure A.3: Statistical features extracted by meter module

A.2.2 Extracting Time-series Features

To extract the time-series features we use-s switch and indicate the output directory

in our command, as in Figure A.4:

PYTHONPATH=.. python3 dohlyzer.py -f ./test.pcap -s output dir

84

Figure A.4: Running meter module to extract time-series features

The results are then save inoutput dir as we requested (See Figure A.5).

85

Figure A.5: Time-series features extracted by meter module inoutput dir directory

As you can see, there is a JSON �le for each of the
ows of the tra�c. To aggregate

all of the JSON �les in each directory and having one �le per label (DoH/non-DoH),

we can use theclump aggregator.py script (See Figure A.6):

python3 clump aggregator.py --json output dir/doh

python3 clump aggregator.py --json output dir/ndoh

86

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Summary of Contributions
	Thesis Organization

	Background and Related Works
	Domain Name System
	DNS Vulnerabilities
	DNS Forgery
	DNS Hijacking
	DNS Spoofing (DNS Cache Poisoning)
	DNS Redirection
	DNS Authoritative Poisoning

	Covert DNS Channels
	DNS Rebinding
	Network Reconnaissance
	Denial of Service
	NXDOMAIN attack
	Random subdomains attack
	Phantom domain attack
	Reflection/Amplification attack

	DNS Available Security Solutions
	DNSSEC
	DNS-over-Encryption

	DNS-over-HTTPS
	Available Configurations
	DoH Security Concerns and Remaining Vulnerabilities
	DNS Tunneled Traffic Characterization
	Encrypted Traffic Characterization

	Summary

	Proposed Framework
	Overview
	Data capture and pre-processing module
	Feature extraction and selection module
	Statistical features
	Time-series features

	Classification module
	Statistical features classifier
	Time-series Classifier

	Summary

	Implementation
	DoH Tunnel Dataset Collection
	Capturing Web Browsing Network Activity
	Capturing DoH Tunnel Network Activity

	Feature Extraction
	Statistical Features Extraction
	Time-series Features Extraction
	Clumping process
	Visualizing clump sequences

	Summary

	Results and Discussion
	Data Repository and Distribution
	Layer 1: Classification of HTTPS traffic flows
	Classification by Statistical Features
	Classification by Time-series Features

	Layer 2: Characterization of DoH traffic flows
	Classification by Statistical Features
	Classification by Time-series Features

	Summary

	Conclusions and Future Work
	Future Work

	Bibliography
	Using DoHlyzer package
	Requirements
	DoH Meter Module
	Extracting Statistical Features
	Extracting Time-series Features

	DoH Analyzer Module
	DoH Visualizer Module

	Vita

