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Abstract

Wind power prediction is of great importance in the utilization of renewable

wind power. A lot of research has been done attempting to improve the

accuracy of wind power predictions and has achieved desirable performance.

However, there was no complete performance evaluation of machine learn-

ing methods. This thesis presented an extensive empirical study of machine

learning methods for wind power predictions. Nine various models were con-

sidered in this study, which also included the application and evaluation of

deep learning techniques. The experimental data consisted of seven datasets

based on wind farms in Ontario, Canada. The results indicated that SVM,

followed by ANN, had the best overall performance, and that k-NN method

was suitable for longer ahead predictions. Despite the findings that deep

learning failed to give improvement in basic predictions, it showed the po-

tential for more abstract tasks, such as spatial correlation predictions.
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Chapter 1

Introduction

We only have one Earth but we need 1.6 Earth to support our activities

[1]. We are using the natural resources in an unsustainable way. To give a

concrete example, August 13 is the Earth Overshoot Day of 2015 [2], after

which the resources consumed by human activities exceed what the Earth is

able to regenerate in a year. This simply means after that day we are using

the resources from the future. What is more, the Earth Overshoot Day has

been becoming earlier every single year [2].

Unsustainable use gives rise to imbalanced ecology. Fossil fuels (e.g. coal,

petroleum and natural gas) have played an important role in human history.

They have always been the main energy source of human; industrialization

cannot be realized without the consumption of fossil fuels; they are the foun-

dation of modern transportation [4]. On the other hand, the combustion of
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fossil fuels globally results in excessive amount of greenhouse gas that endan-

gers the health of our environment. The abnormal raise of carbon dioxide

level, global warming and acid rain can be all attributed to burning fossil fu-

els [4]. Serve air pollution in northern China recent years is another striking

example of the negative impact of fossil fuels [5].

It is good to see that most of the countries in the world are aware of climate

change and resources shortage. The most recent United Nations Climate

Change Conference, namely COP 21, is held in Paris, France in December

2015 for two weeks. 195 countries in total attended this conference [3]. The

main achievement of this conference is the Paris Agreement, which sets a

strict goal of controlling global warming to be below 2 degree Celsius. The

Paris Agreement also states the requirement of zero greenhouse gas emission

during 2051 - 2100 [3]. This clearly shows that countries around the world

need a new structure of energy consumption and that renewable energy is

indispensable.

1.1 About Wind

Wind energy is one of the clean and renewable resources that can be utilized

to support industrial activities. It is also one of the oldest energy used by

human, such as in windmills and on sailboats.
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Simply speaking, wind is moving air. The movement of air forms current

that transfers heat from one place to another. Although we can feel wind

everyday and think it is very close to us, the scale of air circulation is actu-

ally global [7]. This global circulation itself has important meaning to the

Earth’s ecosystem.

Wind has its own characteristics. One of the characteristics is that wind is

intermittent. Sometimes there is almost no sign of the wind, while sometimes

people can easily tell that it is windy just by hearing. Wind is affected by

terrain a lot. Wind is usually stronger near the shores, because of the uneven

air temperature between land and water. Higher wind speed around some

valleys is the result of a similar condition: the heating difference, between

mountain and valley in this case. The profiles of the wind also vary from

season to season and stronger wind is observed more frequently during spring

in North America [7].

1.2 Wind Power

Since wind is air in motion, it must contain energy within it. More formally,

a moving object with mass has kinetic energy [9]. Although air is very light,

its motion still produces energy. Intuitively, higher wind speed generates
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more energy. To show this intuition is correct, a few simple equations are

needed.

The first equation is about the kinetic energy, as given by

Kinetic Energy =
1

2
mv2, (1.1)

where m and v are the mass and velocity of the moving object, respectively

[7]. Then, let us assume that we only focus on a small period of time t.

Knowing the fact that mass is a product of density(ρ) and volume(V ), we

get an equation for wind energy as follows

Wind Energy =
1

2
· ρV · v2

=
1

2
ρ · Avt · v2

=
1

2
ρAtv3, (1.2)

where A denotes the area that the wind passes through [7]. To emphasize,

given a period of time t this equation gives the kinetic energy of the wind,

and the volume of the wind is defined by the product of the area of interest

and the distance1 the wind traveled during time t. To go one step further,

dividing the equation by the time t gives the rate of wind energy, namely

1Since time t is short, wind speed v can be seen as a fixed value. So Distance = vt is
an acceptable approximation.
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wind power

P =
1

2
ρAv3. (1.3)

Equation (1.3) shows that the intuition about wind speed is correct. And

more precisely, wind power is proportional to the cube of wind speed. Besides,

wind power is also dependent on the density of air and the area intercepting

the wind.

One important point to note about Equation (1.3) is that this equation gives

the total power within the wind. It is ideal that all such amount of power

can be converted into other useful forms. In reality, however, only part of

the power can be harvested.

To capture the energy in the wind, human has designed many tools, such as

traditional sails and modern wind turbines. The most commonly seen wind

turbine consists of a tower and a rotor with three blades. When the wind

is strong enough, it rotates the rotor so that wind energy can be converted

to electricity. The size of a wind turbine can be described by the diameter

of its rotor, which ranges from only half meter to over 100 meters [7]. The

rotor’s size determines the wind turbine’s swept area, which corresponds to

the area A in Equation (1.3). A wind turbine’s size sometimes also refers to

its wind power capacity, usually given in kilowatts(kW) or megawatts(MW).

Again as suggested by (1.3), the power capacity of a wind turbine is closely

5



related to its swept area.

In early years, wind turbines were mainly used to generate electricity at

remote sites where central power grid has not yet reached [7]. As wind tech-

nology improves and the size of wind turbines increases, commercial wind

farms emerge. Most wind farms are connected to the power network to sup-

ply electricity along with other types of power plants. In some places, wind

energy is also used for heating and pumping water [7].

Wind power has become more influential since the early 1970s. For North

America, the 1980s is the time when the wind power industry found its way

to the market, especially in California [7]. Global wind power capacity has

the highest growth rate comparing to other types of power generation in last

few decades. It even grows more rapidly than experts’ expectation. In a 2007

book [8], the author predicted the global wind capacity to reach 200,000 MW

by 2013; the actual capacity in 2013 has past 300,000 MW [17]. As of 2014,

global wind power generation accounts for 5% of overall electricity demand

[16]. This percentage rate is the so-called wind penetration rate. In Denmark,

as a country with the highest wind penetration rate, this percentage is 39.1

[16].

While currently most wind farms around the world are on the land, the fu-

ture of wind energy industry is more likely dependent on the development of
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offshore wind farms. Since there is little obstacle over the sea, the offshore

wind speed is higher and has less variance. And the space limit does not

exist for offshore wind turbines so that both the scale of wind farms and the

size of wind turbines can be very large. For example, a single wind farm

called Horns Rev in Denmark was able to generate 2% electricity demand of

the country [21]. These advantages of offshore wind power show that it has

great potential in the near future.

1.3 Wind Power Integration

One essential task that any power system needs to handle is to match the

supply with the demand. This is a dynamic balance. For the electricity

demand, an amount is estimated according to past patterns. This demand

estimation will help the system operator to decide how much power to supply

in order to match the demand or reduce waste [23]. Apparently, the demand

varies over time, which requires the supply to be adjusted accordingly. The

adjustment in power production is a much easier task for traditional fossil-

fired power stations than for wind power ones. For thermal power stations,

the output can be scheduled to follow the demand changes. But just as most

other types of renewable energy, wind power has fluctuations that can be

hardly controlled [8]. Unlike natural gas power stations, wind power is not

dispatchable [18]. The maximal wind power production is mostly subject to
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the wind condition at the moment. Therefore, it is necessary to take extra

care to ensure that the power system is able to absorb the wind power inte-

grated.

The key issue of wind power integration is related to the variance of wind

power. One way to significantly reduce the variance is to aggregate the

power generation from multiple wind farms because the wind conditions are

less likely correlated between different geographical locations. Using energy

storage is another solution to this issue as the surplus energy generated by

the wind can be used later, such as during the period of peak demand. Last

but not least, wind power prediction can be extremely helpful in that it gives

a quantified wind power output for estimating overall supply.

1.4 Wind Power Predictions

The role of wind power prediction is becoming increasingly important while

the wind penetration rate is constantly growing. Every power system has

reasonable capability to adapt demand changes as the demand estimation

has never been perfectly accurate. When the penetration rate is relatively

low, power systems do not have to pay too much attention to the variance of

wind power supply. This is because, for example, a drop in wind speed re-

sulting in lower wind power supply is very similar to an increase of demand,
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which will be within the control of the power system [8]. However, when

the wind penetration reaches a certain level, wind power prediction becomes

a necessary tool. Additionally, wind power prediction can help in avoiding

imbalance charge [21] and improve the stability and efficiency of the power

systems [8].

The general steps to predict wind power are as follows: wind speed is usually

predicted first by an appropriate model; then the predicted wind speed is

used to determine the expected wind power output for a specific wind farm;

and the prediction result of a wind farm may be further used to forecast

regional output [20]. Sometimes the first two steps are combined by some

prediction models.

Wind power prediction can be categorized to different groups in mainly two

ways. One way is to consider the time scale that a method predicts. Some

methods predict wind power for next minute, while others predict several

hours ahead. Wind power prediction methods can also be categorized ac-

cording to whether they are physical or statistical.

There is actually no absolutely strict classification rule for wind power predic-

tion methods with different time scales. Nevertheless, prediction methods are

typically categorized to four groups: very short-term, short-term, medium-

term and long-term prediction. Prediction methods with time scale shorter
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than 6 hours are usually considered to be short-term and methods longer

than 24 hours to be long-term; Very short-term predictions focus on wind

power generation within next minute [19]. Prediction methods with different

time scales have different application in practice. My work in this thesis falls

into the range of short-term wind power prediction, which is usually related

to power dispatch planning [19].

We can also categorize wind power prediction by the actual approach it

takes. A physical approach involves building specific physical models of dif-

ferent wind farms. This approach takes into account the detailed information

of wind turbines and wind farm terrain [20]. The other one is the statistical

approach that includes time-series models and machine learning models. The

statistical approach only uses historical data to build a model to predict fu-

ture values of interest. In some cases, Numerical Weather Prediction (NWP)

is used to provide various meteorological input, such as wind speed and wind

direction [19]. There are also many hybrid methods available for wind power

prediction.

1.5 Machine Learning

Machine learning is a field of computer science that focuses on improving the

performance of the program by itself with experience. In machine learning,
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the machine is not told how to solve the problem explicitly; rather, past ex-

perience is given to the machine as input and the output is typically a model

that can solve future problems of the same kind. Machine learning can also

be seen as a multidisciplinary field, which applies knowledge from artificial

intelligence, statistics, neuroscience, etc. [11]. Nowadays, the application of

machine learning is around us in everyday life. Speech recognition and online

personalized advertisement are two of the most common ones. The computer

program AlphaGo that beats the Go world champion is another example of

the power of machine learning.

The complete procedure of machine learning includes several steps. First,

past experience is usually gathered for the training in the later stage. Then,

the form of an abstract target function is determined, which describes the

relation between existing input and desired output. After that, a machine

learning model is selected to approximate the target function. In the end, an

appropriate algorithm is used to build the model from the training examples

[11].

In the case of wind power prediction, the target function usually maps from

weather data to future wind power. And the relevant machine learning mod-

els will be discussed in next section.

11



1.5.1 Machine Learning Models

Among simpler machine learning models, decision trees and k-nearest neigh-

bors (k-NN) are two effective methods used in many application. As its name

shows, a decision tree is a model with a tree structure that can be built by

training examples. At each node of the tree, a decision is made depending

on one of the input attributes. After several decisions one of the leaves will

be reached, which corresponds to the target function output. The k-NN

method can be explained by its name, too. Given a set of training examples,

the k-NN produces the result by calculating the average of k training exam-

ples that are closest to the test sample. The distance is typically Euclidean

distance and it can have a more general definition.

In the scope of wind power prediction, two commonly used machine learn-

ing models are artificial neural network (ANN) and support vector machine

(SVM) [20]. An ANN consists of an input layer, some hidden layers and an

output layer. Each layer is formed by a number of neurons. It is the neuron

that has the capability to learn the relationship between input and output.

Input data passes through hidden layers to produce prediction in the output

layer. Many variants of the ANN are used in practice, among which are mul-

tilayer perceptron (MLP) and recurrent ANN [20]. SVM is a relatively new

algorithm in the field of machine learning and it is a kernel-based learning

method [13]. The mechanism behind the SVM is rather complicated. To

put it in a simple way, an SVM tries to find a divider called hyperplane with

12



maximal margins to both sets of training examples. The resulting hyperplane

is then used to do the prediction.

There are other machine learning models that are applied to predict wind

power such as fuzzy systems, etc. [20]. Hybrid approaches that combine

different machine learning techniques also exist [19].

1.5.2 Deep Learning

Deep learning consists of methods that can effectively and efficiently train

deep neural networks. Comparing to regular ANNs, a deep neural network

(DNN) has multiple hidden layers which makes it much harder to train [14].

In return, the model complexity is much higher and so is its learning ability.

With enhanced learning ability, a deep neural network is able to learn more

abstract conception through its layers of neurons.

Convolutional neural network belongs to the family of deep neural networks.

Because of its special ability to discover spatial relation, it has very good

performance in image recognition [14]. Recurrent neural network is another

model that works well with deep learning. Because it has the property of

saving earlier states of neurons, it is a suitable model for temporal predic-

tions [23].

Because of the increased complexity of deep neural networks, the problem
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of overfitting is more prevalent in deep learning. Overfitting is an undesired

situation that may occur during the stage of training, where the model being

trained fits so well to the training data that it becomes lack of generalization.

If overfitting occurs, the model will perform almost perfectly on training ex-

amples and has little prediction ability. Overfitted models behave as if they

have memorized the training data rather than learned from it. To tackle

the problem of overfitting in deep learning, many methods including dataset

expansion and dropout technique are developed [14].

The motivation for this study mainly comes from two considerations. For

one thing, in the research of machine learning methods for the wind power

prediction, there is a blank for an extensive empirical study. The literature

review, which will be given in Chapter 2, suggests more clearly the necessity

of such study. For another, deep learning is a young subfield of machine

learning and it has been proven to be powerful in various problem solving

settings. Since only very limited work has been done with respect to deep

learning in the wind power prediction, it is of great interest to us to see how

well it can perform in this field.

The remaining chapters of this thesis are structured as follows: Chapter 2

reviews related work in wind power prediction; Chapter 3 describes the data

and the experiment procedure in this work; Chapter 4 presents and discusses

the results of the experiment; and the last chapter concludes this thesis.
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Chapter 2

Literature Review

There is lots of work that has been done in wind speed and power predictions

since the year of 2000. In recent work, artificial intelligence techniques and

machine learning models have been the focuses of most researchers [26]. As

shown in last chapter, wind power predictions can be grouped by their time

scales into four categories: very short-term (few seconds - 30 min), short-

term (30 min - 6 h), medium-term (6 h - 1 day) and long-term (longer than 1

day) [24]. In this chapter, related work using machine learning methods will

be reviewed for each group, with emphasis on the short-term predictions.

2.1 Very Short-term Wind Power Predictions

The time scale of very short-term prediction usually ranges from 1 minute

to half an hour, but it also can be as short as few seconds. The prediction

15



results can be used for wind turbine control [24], real-time grid operation

[25], etc.

In [34], a Kalman filter was used on the input data before feeding it into a

support vector machine (SVM), which predicted wind speed with an ahead

time of 10 minutes. Reference [35] presented a hybrid wind power model

based on wavelet transformation, particle swarm optimization and fuzzy in-

ference system that had a time scale of 15 minutes. This method also had a

relatively short computation time. Potter et al. [36] proposed an adaptive

neuro fuzzy inference system model with multiple layers that uses Gaus-

sian activation functions, which reduced the mean absolute error (MAE) of

2.5-minute-ahead prediction to 4%. In [37], a three-layered recurrent neural

network (RNN) model combined with moving average technique was used

to predict wind speed in 15 minutes. In 2014, a novel ν-support vector re-

gression model with augmented Lagrange method was used to forecast wind

power by taking only wind speed as input [38].

2.2 Short-term Wind Power Predictions

Wind power predictions with time scales between 30 minutes and 6 hours

belong to short-term prediction. Methods in this category mainly serve to

plan load dispatch in order to make wind power economically more compet-

itive [25].
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In [43], a fuzzy model was used to predict wind farm power generation. The

main input was wind speed and direction. This model also took advantage

of spatial correlation which uses not only one wind farm data, but its nearby

sites’ information as well. Monfared [44] proposed a hybrid model combining

fuzzy logic and ANN for wind speed forecasting using historical wind speed

data from 2005. The ANN was trained by the traditional back-propagation

algorithm and used as a 30-minute-ahead predictor.

Ramirez-Rosado et al. [39] introduced a multilayer perceptron (MLP) net-

work using Kalman filter as data preprocessing. This two-layered neural

network had the prediction interval of 30 minutes, the input of which con-

tained wind speed, historical wind power and wind farm’s real-time data.

Eventually 14.1% root mean squared error (RMSE) was achieved. In Ref-

erence [45], a back propagation ANN designed for short-term wind power

prediction was described. The number of neurons in the hidden layer was

determined by trial and error, which showed that too many neurons led to re-

duced accuracy. Sideratos & Hatziargyriou [41] proposed an optimized radial

basis function (RBF) neural network for probabilistic wind power forecast-

ing. This model’s time horizon was 1 hour and it took into consideration

wind power, wind speed, wind direction and terrain effect when predicting

wind power. The improvement of this model comparing to persistence model

was over 50%.
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In Reference [40], a method combining wavelet transformation and SVM was

proposed to predict wind speed 30 minutes ahead of time. This SVM had

a radial basis function kernel and used temperature and wind speed as in-

put. Fan et al. [42] divided wind power prediction into two stages: firstly

a Bayesian method was used to cluster the input data, including wind di-

rection, wind gust speed, etc.; then a SVM used the processed data for 10

minutes ahead power prediction. This method combined unsupervised and

supervised learning and its RMSE improvement over persistence model was

around 37%. In [32], an epsilon-SVM was used for short-term prediction. It

was discovered that too large a training set can result in undesired learning

effect of the SVM and that the prediction became unstable when wind speed

changed abruptly. Mao et al. [30] described a new process for wind power

prediction. In addition to the steps in the traditional process, an error eval-

uation was added before the final prediction. ANN and SVM were used to

verify the effectiveness of this process and results showed obvious improve-

ments for both cases.

In 2009, Kusiak et al. [28] conducted a experiment comparing several data

mining approaches for short-term wind power prediction, including regres-

sion trees, MLP and SVM. The input data, mainly wind speed, was collected

for the entire month of January, 2006. The feature selection was done by

a boosting tree algorithm. The results indicated that the MLP model per-
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formed the best among others for hourly predictions.

2.3 Medium- and Long-term Wind Power Pre-

dictions

Predictions between 6 hours and 1 day and longer than 1 day are classified as

medium-term and long-term, respectively. These predictions can be helpful

in the decisions of unit commitment, reserve requirement, maintenance, etc.

[25]. It is worth noting that research done for long-term prediction is less

than that for shorter time horizons.

In Reference [47], an advanced structure of prediction model with multiple

RBF networks was presented. It was showed that both MAE and RMSE

were improved by 40%, even for forecasts that are longer than 10 hours.

Togelou el al. [46] studied an unusual situation where historical data for

training is limited. Complex terrain along with regular wind data was used

as input for two RBF network models, of which the prediction interval was

6 hours. Rzui & Eremia [31] compared the performance of a fuzzy inference

system and an ANN for medium-term wind power prediction using hourly

mean wind power. The results indicated that the fuzzy inference system is

slightly better than the ANN and large training set was needed for both.

Tao et al. [48] introduced a deep belief network with restricted Boltzmann

machine to learn historical wind speed patterns. Regular ANN and SVM
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were compared to the proposed model and it was shown that, especially for

longer ahead predictions, the new model outperformed the others. Amjady

et al. [49] used the particle swarm optimization technique for a hybrid neural

network model. This model took into account the air humidity and made

prediction 1 to 2 days ahead of time. Finally 1.59 normalized MAE was

achieved. In [50], a hybrid model based on ANN was used for 2-day-ahead

prediction, taking only wind speed as input. Barbounis et al. [51] presented

three RNNs for long-term wind speed and power prediction. Two optimized

online learning algorithm were applied in this study. Air temperature and

pressure were considered as auxiliary input when making prediction.

From this review, a few issues was found, being listed as follows:

· Most datasets used in different studies were not large enough to be

representative. For example, some datasets only had historical data for

one month, which is unable to demonstrate the seasonal characteristics

of the wind.

· The evaluation metrics were not uniform and the comparison studies

were not complete.

· Majority of the models were trained by data containing only wind speed

and wind power; more attributes including temperature and humidity

should be considered.

· Deep learning for wind power predictions is in its early stage of devel-

opment.
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As stated in Chapter 1, the existence of these issues is part of the motivation

of this empirical study. We will attempt to address all of the above issues in

following chapters.
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Chapter 3

Methodology

Considering the incompleteness of current wind power prediction in the field

of machine learning, We collected multiple datasets and designed different

types of experiments involving various machine learning models, which fo-

cused on predicting short-term wind power. Since little research of deep

learning has been done for wind power prediction, a deep neural network

model is included and compared to other models. The experimental data

and models will be described first in this chapter, followed by experiment

detail and evaluation approaches.

3.1 Data Description

To reduce the occasionality of the experiments, seven datasets has been col-

lected and prepared. These final datasets were composed of publicly available
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Table 3.1: Selected Wind Farms

Wind Farm Capacity (MW) Location

Erieau 99 Erieau

Dillon 78 South Buxton

Spence 99 Ridgetown

Kingsbridge 40 Kingsbridge

Wolfe Island 198 Wolfe Island

Port Alma 101 Port Alma

Part Alma 2 101 Port Alma

information from two separated data sources – wind power data and meteo-

rological data.

3.1.1 Wind Power Data

The first part of the data containing wind power generation information

was collected from the Ontario’s Independent Electricity System Opera-

tor (IESO) official website [52]. This dataset contains a number of wind

farms’ hourly power generation data that has time range from March, 2006

to November, 2015.

Seven wind farms were selected from the entire wind power dataset. Table

3.1 shows installed capacity and location information of the seven wind farms
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Table 3.2: Meteorological Stations

Station Name Wind Farm Distance (km) Coordinates

Erieau
Erieau 6

42.25◦N, 81.90◦W
Part Alma 2 18

Chatham Kent
Dillon 8

42.31◦N, 82.08◦W
Port Alma 17

Ridgetown RCS Spence 9 42.45◦N, 81.88◦W

Goderich Kingsbridge 12 43.77◦N, 81.72◦W

Kingston A Wolfe Island 15 44.23◦N, 76.60◦W

which are all located in Ontario, Canada.

3.1.2 Meteorological Data

Hourly meteorological data corresponding to the above seven wind farms was

then collected from the Government of Canada website [53]. The attributes

in the data include temperature, pressure, humidity, wind speed, wind direc-

tion, etc. These public datasets are available in the form of meteorological

stations and totally five stations closest to each of the seven wind farms were

selected. Table 3.2 lists the selected meteorological stations and their details

including the distances to corresponding wind farms and geographical coor-

dinates.

Since both wind power data and meteorological data are hourly available,
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Table 3.3: Experimental Datasets

No. Dataset Size First Record

1 Erieau - Erieau 21933 May 1, 2013

2 Dillon - Chatham Kent 13173 May 1, 2014

3 Spence - Ridgetown RCS 28485 Aug 1, 2012

4 Kingsbridge - Goderich 16053 Jan 1, 2014

5 Wolfe Island - Kingston A 8760 Nov 1, 2014

6 Port Alma - Chatham Kent 13173 May 1, 2014

7 Part Alma 2 - Erieau 29949 Jun 1, 2012

the one-to-one mapping is automatically established between them. The fi-

nal seven experimental datasets were obtained by properly joining the wind

power datasets and the meteorological datasets, respectively. Their informa-

tion is described in Table 3.3. The last records of the seven datasets have the

same time stamp of October 31, 2015 and different first records are noted in

the table.

The datasets listed in Table 3.3 are the base datasets for this study. Some

derivative datasets are used in some experiments and their details will be

mentioned later along with the experiments.
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3.2 Models Description

A wide range of various models were selected in this study. Persistence

model and linear regression are two non-machine learning models that are

intended to provide some performance reference. The rest of the selected

models include k-NN, two regression trees, three ANN and its variants and

SVM.

3.2.1 Persistence Model

The persistence model is the most commonly used reference model in wind

power prediction [21]. As the simplest model at the same time, persistence

model uses merely the last one historical data point to predict the next value.

So, at time t, the persistence model for time t+ ∆t can be given by

P̂t+∆t = Pt, (3.1)

where P denotes actual known wind power (or more generally, target at-

tribute value) while P̂ stands for predicted value.

Time step ∆t may vary for different applications from a minute up to a day

or longer. The time step used throughout this thesis will be one hour. For the

persistence model, the shorter the time step, the more accurate prediction it

can make. For sufficiently short time step, the performance of the persistence
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model can be difficult to beat [21].

3.2.2 Linear Regression

Linear regression is a basic model in statistics. It is simple but sometimes

very effective. Given a historical dataset {xi, Pi}ni=1, a linear regression model

wants to find a linear relationship

P̂ = âx+ b̂ (3.2)

such that the sum of the difference between each point xi, i = 1, 2, ..., n and

the ‘line’ P̂ is minimized. For estimating parameter â and b̂, ordinary least

squares is the most common method. In the case of simple linear regression,

these two parameters can be estimated by [10]

â =

∑
xiPi − 1

n

∑
xi
∑
Pi∑

x2
i − 1

n
(
∑
xi)

2 , b̂ = P̄ − âx̄,

where P̄ and x̄ denotes the mean of xi and Pi, i = 1, 2, ..., n, respectively.

3.2.3 k-Nearest Neighbors

The k-NN model is one of the instance-based learning methods. It considers

all instances (or training examples) as being in a multidimensional space

with the dimension equal to the number of attributes of an instance. The

Euclidean distance is usually used to choose k neighbors that are closest to
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the query instance. The predicted value is then determined based on these

k neighbors [11]. For example, assuming there is a training set

{xi, yi, Pi}ni=1

where x and y denote two attributes of a instance, the distance between two

instances ei = (xi, yi), ej = (xj, yj) is defined as

d(ei, ej) ≡
√

(xi − xj)2 + (yi − yj)2. (3.3)

When a query instance eq is given for prediction, the k nearest instances de-

noted by e1, e2, ..., ek can be found according to the above definition. Finally,

the predicted value P̂q is determined by

P̂q =

∑k
i=1 Pi
k

. (3.4)

Note that Pi is the target attribute value of a training instance ei.

In this study, the model parameter k was set to 10 and one further improve-

ment has been made by adding weights to the k nearest neighbors according

to the reverse of the distance, i.e. wi = 1/d(ei, eq), i = 1, 2, ..., k. Therefore,

nearer neighbors has greater weights and the refined model is given by

P̂q =

∑k
i=1wiPi∑k
i=1 wi

. (3.5)
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3.2.4 REP Trees

REP tree stands for reduced-error pruning tree [11]. This type of regression

tree is firstly constructed without paying attention to the global error. At a

leaf node l with a subset of training instances, a local model is built which

simply takes the mean of the target attribute values of these instances, as

given by

P̂l =
1

‖E(l)‖
∑
i

∀ei∈E(l)

Pi, (3.6)

where E(l) is the set of the instances locally associated with leaf l and ‖E(l)‖

denotes the size of the set.

After the tree is built, the possibility of pruning is examined at each node

starting from the leaves. The default error metric used for REP regression

tree is the sum of squared error

S =
∑
l∈L

∑
i

∀ei∈E(l)

(P̂l − Pi)2, (3.7)

where L is the set of the leaf nodes of this REP tree and P̂l is given by

Equation (3.6). The subtree will be pruned and replaced by a leaf if doing

so does not increase the global error S. The value of S is also used to stop

further partitions during the construction of the tree in order to address the

issue of overfitting [12].

29



3.2.5 M5P Trees

M5P tree is a combination of decision trees and linear regression. As with

REP trees, an M5P tree is built recursively. At each tree node, the algorithm

checks if it is the base case; it implies a base case when either the number

of training examples associated with this node or their standard deviation

is less than some threshold. A linear regression model is then built based

on the remaining instances. For recursive cases, the training examples are

split at this node based on the outcome of a test for one of the attributes [33].

To reduce overfitting, pruning technique was used and the minimal number

of instances at a leaf was set to 4.

3.2.6 Multilayer Perceptron

MLP belongs to the family of ANNs and its structure is shown in Figure 3.1.

As its name suggests, an MLP consists of multiple layers of perceptrons – a

special kind of artificial neuron, which is the smallest computation unit in

an ANN.

Let x1, x2, ..., xm be m real-valued input variables of a perceptron. The out-

put is determined by the linear combination of the input variables, as given

by z = w0 +
∑m

i=1wixi, where wi, i = 0, 1, ...,m, are the weights to be

learned. Further, the output, also known as the activation, of the percep-
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Figure 3.1: Artificial Neural Network [6]

tron o(z) = sgn(z) 1. Alternatively, the activation function can be a sigmoid

function

o(z) = σ(z) ≡ 1

1 + e−z
, (3.8)

which yields continuous values between 0 and 1 [11]. Then, the output o(z)

of a neuron feeds forwards as an input variable to other neurons in the next

layer until the output layer is reached.

The training task for an MLP is to find out the proper values of the weights w

for all neurons so that the prediction error is ideally minimized. This is done

by an iterative approach that considers the difference between the output

1sign function sgn(z) =

{
1, if z > 0

−1, otherwise
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and target value, which is quantified by a quadratic cost function

C(w) =
1

2n

n∑
i=1

(P̂i − Pi)2, (3.9)

where w represents all weights in this MLP and n is the number of training

examples as in earlier sections.

To reduce the cost in (3.9), teh gradient descent approach is applied to update

the weights in each iteration. For each weight wk, the updating rule is [14]

wk ← wk − η
∂C

∂wk
(3.10)

where η denotes learning rate. The learning rate η has to be an appropriate

value to avoid either slow learning or oscillation around the optimal value. In

order to compute ∂C
∂wk

, the backpropagation algorithm is used. The number

of perceptrons in the hidden layer was set to 10 and all attributes were

normalized during the training.

3.2.7 Radial Basis Function Networks

An RBF network is one kind of ANNs that shares some similarities with the

k-NN model. The RBF network is named by the fact that the activation

function of its neurons is a radial basis function φ whose value is only depen-

dent on the distance between the input and a predefined ‘center’. Generally,
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given m centers {ei}mi=1, the approximation that an RBF network can yield

for eq is expressed as [11]

P̂q = w0 +
m∑
i=1

wiφ(d(ei, eq)), (3.11)

where d typically gives the Euclidean distance as in Equation (3.3) and φ

is usually the Gaussian function, i.e. φ(d) = exp(− d2

2σ2 ). Equation (3.11)

implies that the RBF network has an very similar structure to an MLP with

a single neuron in the output layer.

Training an RBF network is usually divided to two stages. The first stage

involves calculating the centers {ei}mi=1. This is done by applying a k-mean

clustering algorithm on the training examples. The number of centers, m,

was set to 100, so there were 100 clusters randomly initialized. At the second

stage, the weights {wi}mi=1 are trained while the radial basis functions are

fixed.

3.2.8 Support Vector Machines

At first sight, an SVM appears to be only able to represent a linear rela-

tionship between input and output because it looks for support vectors to

determine a linear hyperplane. However, original input data can be trans-

formed to a more complex form often with higher dimensions. In this new

feature space, the linear relationship can be found which can be described
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by

P̂q = w0 +
m∑
i=1

wiφi(eq) (3.12)

where {φi}mi=1 is a set of non-linear mapping to the new feature space. When

transferred back to the original feature space, the non-linear relationship be-

tween input eq and prediction P̂q is obtained accordingly [13].

In this study, the ε-SVM was used. The ε is a parameter that indicates the

width of the regression band inside which the loss is considered zero. The

loss is represented by slack variables ξi or ξ∗i , i = 1, 2, ..., n, depending on the

directions of deviation. Knowing the fact that smaller weights usually lead

to a simpler model, training the ε-SVM is equivalent to

Min
1

2

m∑
i=1

w2
i + C

n∑
i=1

(ξi + ξ∗i ) (3.13)

s.t. Pi − P̂i ≤ ε+ ξi, i = 1, 2, ..., n

P̂i − Pi ≤ ε+ ξ∗i , i = 1, 2, ..., n

ξi, ξ
∗
i ≥ 0, i = 1, 2, ..., n

where C indicates model complexity. The above quadratic programming

problem can be solved by solving its dual problem and the solution is given

by [13]

P̂q =

nSV∑
i=1

(αi − α∗i )K(ei, eq), s.t. 0 ≤ αi, α
∗
i ≤ C, (3.14)
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where nSV is the number of support vectors and the kernel K(ei, eq) =∑m
j=1 φj(ei)φj(eq). In the experiments, the value of parameter C was 1000

and ε was set to 1.0. The specific kernel applied was Gaussian RBF as given

by

K(ei, ej) = exp

(
−d

2(ei, ej)

σ2

)
. (3.15)

3.2.9 Deep Neural Networks

The ANN is one of the machine models that take effort to train; in the case

of DNN that has multiple hidden layers, greater challenge is faced in the

learning process. Nevertheless, the gain is the ability to learn more complex

and abstract relationships.

In this study, a DNN with the regular structure was used, consisting of

rectified linear units whose activation function is

o(z) = max(0, z). (3.16)

In comparison to the sigmoid activation function, the rectifier given by Equa-

tion (3.16) will not suffer neuron saturation at±∞ which impairs the learning

efficiency.

As a model with higher complexity, the DNN tends to overfit and avoiding

this issue is of great importance. One of the techniques for reducing overfit-
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ting used in the experiments is dropout. Dropout is a randomized approach

which at the start of each training iteration randomly selects a portion of neu-

rons to be turned off. The deactivated neurons will be temporarily ignored

in this iteration. Then, the weights of the modified and simplified network

are updated and the deactivated neurons are resumed before the next itera-

tion. This technique simulates the effect of voting by multiple networks [14].

Another regularization technique called weight decay was also used in this

study. Sharing the same idea as in (3.13), this technique has the bias in favor

of smaller weights. With weight decay, the original cost function (3.9), noted

by C0 here, gained an extra term as shown by

C = C0 +
λ

2n

∑
w

w2, (3.17)

where n is the number of training examples as before and λ is the weight

penalty parameter that was set to 1.0e−9. The default DNN model in this

study had three hidden layers with 100 neurons in each layer.

3.3 Experiment Procedure

3.3.1 Auxiliary Platform

In the course of experiments, Weka API was used as an auxiliary tool. Weka

is open-source software developed by University of Waikato and it is written

in Java [54]. Weka provides many useful tools for machine learning and data
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mining. The specific version of Weka API used in this study was 3.7.13.

The use of Weka API greatly improved the efficiency of the experiments. As

a result, various experiment settings were able to be realized in this study.

The uniformity of the experiment outcomes provided a convenience for the

comparison and analysis, which in turn improved the consistency of different

experiments.

3.3.2 Feature Selection & Parameter Tuning

The datasets’ feature selection and models’ parameter tuning were mostly

achieved by the try-and-error method. In some appropriate cases, feature

selection used the experience from other papers.

After applying the try-and-error method, nine attributes were kept in the

final experimental datasets, which included Year, Month, Temperature, Dew

Point, Relative Humidity, Wind Direction, Wind Speed, Station Pressure

and Wind Power. All of these attributes contained numeric values. Accord-

ing to the wind power formula shown in Equation (1.3), an artificial attribute

called Wind Speed Cube that had the value of cube of the Wind Speed at-

tribute was also considered for some cases. Based on the experience in [28],

the Wind Power attributes included historical data up to three hours back,

namely Pt−1, Pt−2 and Pt−3.
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The parameters for all models used in this study were tuned using the same

dataset that was a subset of the Erieau - Erieau dataset. Overly tuning the

parameters of a model may lead to a type of overfitting that is different from

the one appears during the training process [14]. To avoid this type of more

general overfitting, most parameters were adjusted to integer or half orders

of magnitude, e.g. 5.0e−9, 1.0e−4, 0.5, 1000, etc.

3.3.3 Experiment Setups

In order to obtain a preferably complete analysis of machine learning for wind

power prediction, various experiments have been designed and conducted us-

ing the prepared datasets and models.

All of the seven datasets containing wind power information from different

wind farms, as listed in Table 3.3, were utilized by all selected models, which

formed the core component of this study. The seven wind farms are all

geographically separated and therefore have their own wind power charac-

teristics. By building and training models given these wind farms’ data, the

generalization abilities of the experimental models could be illustrated and

compared. For this experiment, all datasets were modified to only contains

one entire year data from November, 2014 to October, 2015. The target

attribute was next hour wind power.

Different prediction time horizons, from one hour ahead to six hours ahead,
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were considered in this study. Each experimental model was trained from

scratch for six times corresponding to the six time horizons. As a result,

the further ahead predictions did not rely on former predicted values. The

training and testing data used for this experiment was based on the Erieau

- Erieau dataset. The target attribute was slightly adjusted for each case.

Larger datasets tend to alleviate the issues of overfitting for non-linear models

[23]. To verify this against different selected models, the Spence - Ridgetown

RCS dataset were further used to conduct the dataset size experiment. All

models were built based on these datasets among which the only difference

was the number of their instances.

Spatial correlations between wind farms were also briefly examined by a

experiment, where the wind power of Erieau and Port Alma wind farm was

predicted by nearby Spence and Erieau wind farm, respectively.

3.3.4 Deep Learning for Wind Power Predictions

As an attempt to investigate and apply deep learning techniques in the field

of wind power prediction, several designated experiments were included in

this study.

To keep the experiment environment in line with that of preceding ones, the

truncated datasets that contain one year data were firstly used. The per-
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formance of DNNs with different numbers of neurons were examined in two

ways. Three DNNs that had three hidden layers with 50, 100 and 150 neu-

rons were trained and observed, respectively. Next, by keeping the number

of neurons in each hidden layer constant at 100, four DNNs with one to four

hidden layers were investigated. After that, the total number of neurons were

fixed at 300 for two experiments focusing on the structure of DNNs. The first

experiment was about the arrangement of hidden layers, which consisted of

one 200-neuron hidden layer and two 50-neuron ones. The 200-neuron layer

was put to be the first, second and third hidden layer in turn and the DNN

were trained for each case. Then, four more DNNs were built which had

one hidden layer with 300 neurons, two layers with 150 neurons, three with

100 and four with 75, respectively. Default DNNs that had different dropout

rates were also tested.

Since larger datasets are in favor of deep learning, all of the above experiments

were conducted again using the complete Spence - Ridgetown RCS dataset

that has historical wind power records from August, 2012 to October 2015.

The aforementioned artificial attribute Wind Speed Cube was also added

into this dataset.

40



3.4 Evaluation

Cross-validation technique was adopted to evaluate the experimental results.

A k-fold cross-validation first evenly divides the entire dataset to k subsets.

Each of the k subsets is to be selected as a validation set in turn. The re-

maining part of the dataset is used to train models while the validation set

functions as a testing set. After k repetitions, the test results are averaged

and reported [11]. In this study, k was set to 10. The 10-fold cross-validation

was applied to train and test each model for 10 times – each time with a dif-

ferent random seed for partitioning the datasets.

Mean absolute error (MAE) and root mean squared error (RMSE) were used

as the evaluation metrics for wind power predictions. As before, let P̂ and

P denote the predicted value and the actual value, respectively. These two

evaluation metrics can be given as follows:

MAE =
1

n

n∑
i=1

|P̂i − Pi| (3.18)

RMSE =

√√√√ 1

n

n∑
i=1

(P̂i − Pi)2 (3.19)

where n denotes the size of testing set. As shown in the above equations,

the MAE is related to the prediction error’s first moment while the RMSE is

associated with the second moment (e.g. variance of the error). Therefore,

RMSE will be affected more by larger errors [27].
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Since the wind farms have different capacities, errors for smaller wind farms

will definitely be less than that for larger ones. To overcome this bias and

have a easier comparison between wind farms, normalized MAE and RMSE

were also used, which are given by

NMAE =
1

n

n∑
i=1

|P̂i − Pi|
M

=
1

nM

n∑
i=1

|P̂i − Pi|, (3.20)

and

NRMSE =

√√√√ 1

n

n∑
i=1

(
P̂i − Pi
M

)2

=
1

M

√√√√ 1

n

n∑
i=1

(P̂i − Pi)2, (3.21)

where M represents the installed capacities of the wind farms, as given in

Table 3.1 on page 23.

In order to give a more direct comparison between the performance of differ-

ent models, an improvement score was used in the evaluation. This score is in

percentage and illustrates the skill of a machine learning model by providing

the gain relative to a reference model. In our case, the persistence model was

used as reference and RMSE value was selected for comparison. Thus, this
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improvement score is given by

Impr. =
RMSEPers. − RMSE

RMSEPers.

× 100%. (3.22)

Paired t-test was also adopted in the evaluation process to test for statistical

significance. The t-test requires that the sample follow a normal distribution

[10], which the MAE satisfies. As the random seeds used for the cross-

validation were the same, the MAEs obtained from it followed the same nor-

mal distribution. Therefore, the MAEs of two different models were treated

as paired examples.
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Chapter 4

Results & Discussion

In this chapter, the results of different experiments will be shown and dis-

cussed. The various experiment setups have been described in Section 3.3.3

and Section 3.3.4 and the results and discussion will be presented in the same

order. Most tables shown in this chapter are tables that only contain aggre-

gate results from all experimental datasets. As the original results of the

experiments can take up too much space, they are available in the appendix.

4.1 Different Datasets

The performance of various models across different datasets will be shown in

this section, which is the basic result of this study.

The original MAE for all selected models and for all available datasets can
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Table 4.2: Aggregate MAE for Different Wind Farms

MAE (MW) NMAE (%)

sum min. max. µ σ

Pers. 47.3598 5.44 7.83 6.62 0.87

LR 48.0175 5.54 8.09 6.72 0.98

k-NN 52.4012 6.05 8.56 7.34 0.95

REP 50.5548 5.88 8.38 7.07 0.94

M5P 47.8423 5.54 8.01 6.70 0.96

MLP 47.5339 5.51 7.99 6.66 0.97

RBFN 49.4604 5.76 8.08 6.90 0.84

SVM 45.0900 5.36 7.53 6.33 0.86

DNN 47.7501 5.53 7.97 6.69 0.96

be found in Table 4.1. Each cell in this table gives the averaged MAE of 10

cross-validations with different random seeds. The middle columns show re-

sults based on different datasets and the last column is the sum of the MAEs.

Since the MAE is a prediction error metric, smaller values are preferable. The

bold font shows that SVMs have the best overall performance with a total

45.09 MAE, followed by Persistence, MLP and DNNs. The SVM model has

an apparent advantage over other models in terms of MAE. To eliminate the

bias between the columns caused by different wind farm capacities, MAEs

are further normalized by dividing corresponding capacities. The tables for

normalized errors can be found in the appendix.

The aggregate MAE and NMAE are shown in Table 4.2. It can be seen that
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Table 4.3: Aggregate RMSE for Different Wind Farms

RMSE (MW) NRMSE (%) Impr. (%)

sum µ σ µ σ

Pers. 79.9891 11.13 1.70 - -

LR 75.8118 10.56 1.64 5.22 0.60

k-NN 82.1926 11.46 1.50 -3.30 2.73

REP 79.6958 11.10 1.55 0.14 1.30

M5P 75.6148 10.53 1.60 5.42 0.56

MLP 75.0579 10.47 1.61 6.03 0.79

RBFN 76.9435 10.69 1.49 3.80 1.50

SVM 75.4896 10.51 1.69 5.71 0.92

DNN 75.1301 10.48 1.60 5.90 0.76

the NMAE also indicates that SVMs have the best prediction accuracy while

RBF networks have the lowest standard deviation. However, the best predic-

tor in terms of RMSE is the MLP, as shown in Table 4.3. The MLP model

has the lowest sum of RMSEs, 75.0579, and also lowest average NRMSE and

highest average improvement score. The accuracy of DNNs follows closely

at the second place. Combining the results from Table 4.2 and 4.3, it can be

concluded that the SVM model has the best overall performance while the

MLP is better at avoiding large prediction errors. The performance of the

DNN model is slightly worse than, but consistent with that of the MLP.

It also can be observed from Table 4.1 that the SVM has not only the lowest

total MAE but also lowest individual error for each of the seven wind farms.
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Table 4.4: Paired t-test Result for SVM

Closest

Dataset Best Model Model p-value µd

Erieau SVM MLP 6.05e-12 -0.2327

Dillon SVM MLP 3.69e-13 -0.2413

Spence SVM DNN 7.71e-13 -0.4335

Kingsbridge SVM DNN 1.54e-09 -0.0674

Wolfe Island SVM MLP 1.72e-11 -0.5406

Port Alma SVM MLP 2.46e-13 -0.4591

Port Alma 2 SVM MLP 1.34e-12 -0.4617

To further support this observation, paired t-test has been conducted and

the result is given in Table 4.4. The paired t-test shows that for all seven

datasets, the MAEs produced by SVMs are significantly less. As shown in the

table, the p-values are so small that it almost impossible that this observation

is incorrect. The rightmost column gives the difference between means.

4.2 Prediction Time Horizons

It is not surprising at all that the longer the prediction time horizons are, the

greater error will be produced. The experimental results of six hours pre-

diction time horizons support this assertion. As shown in Figure 4.1, all six

models1 have MAEs clustered around 6 MW for one-hour-ahead predictions

and their accuracy drops as the time horizon increases. Another noticeable

1Only representative models are presented in figures to improve readability.
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Figure 4.1: Prediction Errors over Time Horizons
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Figure 4.2: Prediction Improvements over Time Horizons
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trend in this figure is that the rate at which the MAE increases actually

decreases over time. It is noted that the MAEs increase the most between

1h and 2h and as prediction time becomes longer the error measure does

not increase as much. Also, the performance of different models has a larger

spread to the right of the time axis.

Last but not least, the k-NN model demonstrates a quite different perfor-

mance pattern comparing to the other models. Again from Figure 4.1, one

can notice that k-NN has the worst MAE at 1h. As the time horizon in-

creases, however, the k-NN model produces relatively lower prediction error

and has the largest lead among others at 6h. This special property of the

k-NN can be more easily observed in the plotting of the improvement score

shown in Figure 4.2. At 1h, the improvement score of the k-NN is blow 0%,

which means it has a lower accuracy than the persistence model. In con-

trast, the improvement of the k-NN model for six-hour-ahead prediction is

well above 20% and all other models stay closely around 15%. A different

improvement curve of the k-NN is observed in the figure while the curves of

other models follow a similar pattern.

The evaluation metric sums of all six time horizons are presented in Table

4.5. As with the figures, this table also shows that the k-NN model has the

best overall performance in terms of all evaluation measures, including MAE,

RMSE and improvement. In addition, the DNN and SVM are two models
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Table 4.5: Sum of Metrics of All Time Horizons

MAE (MW) RMSE (MW) Impr. (%)

Pers. 73.3018 109.3661 -

LR 73.5612 99.7886 48.57

k-NN 62.5368 90.2427 87.46

REP 72.1362 101.3048 37.53

M5P 71.4665 98.2360 56.28

MLP 71.4882 97.7236 59.54

RBFN 78.6587 105.4921 2.39

SVM 67.0202 98.6434 55.38

DNN 70.2383 96.4703 65.10

that are second to the k-NN. It also can be found in this table that the

performance of the DNNs for longer prediction time is slightly better than

that of the simpler MLP models.

4.3 Training Set Sizes

On top of the basic experiment using one year data, one extra experiment

regarding dataset size was run and the result is presented in Table 4.6, where

n is the number of records. The first column, where n = 8760, shows the

case of one year data being used.

One can see from the table that all models, including two reference models
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Table 4.6: RMSE for Different Dataset Sizes (MW)

n = 8760 n = 14242 n = 28485

Pers. 13.4997 13.0176 11.7928

LR 12.7140 12.2176 11.1327

k-NN 13.3619 12.8442 11.7172

REP 13.1765 12.7273 11.4797

M5P 12.6421 12.1495 10.9832

MLP 12.5797 12.0486 10.9104

RBFN 12.6353 12.1376 11.7863

SVM 12.7932 12.2471 11.0138

DNN 12.5814 12.0537 10.9170

gain prediction accuracy when there are more training examples fed into

them. The RMSE of the MLP keeps being the lowest for all three cases. It

is worth noting that as a model with more complexity, the DNN does not

benefit more from the increase of dataset size than other models do. This can

be probably attributed to the fact that dataset size is no longer a bottleneck

for DNNs at this level.

4.4 Spatial Correlation

The spatial correlation experiment result is given in Table 4.7. It is shown

in the table that for the normal case the SVM model and the RBFN model

are the best predictor in terms of MAE and RMSE, respectively. When it
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Table 4.7: Spatial Correlation Result

MAE (MW) RMSE (MW)

itself neighbor itself neighbor

Erieau (Spence)

LR 6.2179 10.5927 9.4200 15.0757

k-NN 6.3581 7.5423 9.7772 11.6918

REP 6.4774 8.7862 9.8350 13.6348

M5P 6.2179 8.2160 9.4217 12.5031

MLP 6.2103 9.0906 9.4010 13.4889

RBFN 6.2161 10.2265 9.3853 14.4573

SVM 5.9796 8.1068 9.4261 12.9468

DNN 6.3534 7.7317 9.4624 11.5964

Port Alma (Erieau)

LR 7.4897 9.7311 11.9617 15.5990

k-NN 7.8406 7.7947 12.4775 12.6935

REP 7.8046 8.7558 12.3967 14.4521

M5P 7.4784 8.7091 11.9368 14.1686

MLP 7.5282 8.8801 11.9455 14.1687

RBFN 7.5233 9.8701 11.8766 15.4140

SVM 7.0699 8.3274 12.0112 14.9459

DNN 7.5425 8.8842 11.9414 14.3024

comes to predicting wind power by neighbor sites, however, the k-NN model

shows its competence. In the case of predicting Port Alma from Erieau, the

k-NN model has the MAE of 7.7947 that is even lower than its MAE of the

regular prediction, 7.8406. Based on the limited experiment, the DNN model

also shows the potential ability for spatial correlation prediction. This is in

accordance with the fact that the DNN is suitable for finding more abstract
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Figure 4.3: Prediction Error vs. Number of Layers
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relationships which is what spatial correlation predictions likely possess.

4.5 DNN-related Results

In this section, the results of designated experiments for DNNs are presented

and discussed.

The relation between prediction error and the number of hidden layers of the

DNN is depicted in Figure 4.3. Focusing on the two-, three- and four-layered,

the performance of DNNs on all datasets improves as the number of layers

increases. However, the improvement gained from extra hidden layers is not

significant. It is worth considering the tradeoff between the training time
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Table 4.8: Aggregate RMSE for Different-sized DNNs

RMSE (MW) NRMSE (%) Impr. (%)

sum µ σ µ σ

Pers. 60.4202 11.34 1.75 - -

DNN:

n = 5 57.4875 10.78 1.70 4.96 1.26

n = 10 57.1141 10.72 1.64 5.44 0.65

n = 20 57.0450 10.71 1.64 5.56 0.65

n = 50 56.9829 10.70 1.64 5.65 0.62

n = 100 56.9606 10.69 1.63 5.69 0.60

n = 150 56.9215 10.69 1.64 5.75 0.62

increased by hidden layers and the prediction accuracy.

Table 4.8 shows the RMSE measures for the DNNs with different number of

neurons on their hidden layers. The number of hidden layers of these DNNs

are fixed at three and they only differ in the number of the neurons on each

layer, as indicated by n in the table. Similar to the effect of adding layers,

increasing the number of neurons each layer also improves the performance of

DNNs, but only to a limited extent. Note that the NRMSE does not change

when adding 50 more neurons on top of 100. Meanwhile, the computational

time dramatically increases with the size of DNNs.

Next, the performance of several DNNs that consist of 300 neurons is pre-
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Table 4.9: Aggregate RMSE for DNNs with 300 Neurons

RMSE (MW) NRMSE (%) Impr. (%)

sum µ σ µ σ

Pers. 60.4202 11.34 1.75 - -

DNN:

300 57.8939 10.88 1.63 4.03 0.73

150-150 57.2474 10.75 1.65 5.21 0.64

100-100-100 56.9606 10.69 1.63 5.69 0.60

75-75-75-75 56.6800 10.64 1.62 6.13 0.52

200-50-50 56.9382 10.69 1.63 5.73 0.62

50-200-50 56.9610 10.70 1.63 5.68 0.61

50-50-200 56.9862 10.70 1.63 5.63 0.62

sented in Table 4.9. While keeping DNNs’ total number of neurons constant,

the increase of the number of hidden layers results in improved performance.

As shown in this table, the 4-layered DDN with 75 neurons on each layer

yields the best outcomes for all measures. As for the four 3-layered 300-

neuron DNNs in the table, the different placement of neurons does not ap-

pear to affect the performance. Nevertheless, putting more neurons in the

first layer should be considered since the DNN with 200 neurons on its first

layer (200-50-50) does achieve the lowest sum of RMSEs, 56.9382, among

other three 3-layered DNNs.

The paired t-test was run for these DNNs on each individual wind farm

dataset. The result shows that for all but Spence and Kingsbridge datasets,
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Table 4.10: Influence of Extra Examples & Artificial Attribute

unit: MW

Spence + examples + v3

MAE RMSE MAE RMSE MAE RMSE

Pers. 7.7494 13.4997 6.9889 11.7928 6.9889 11.7928

DNN:

300 8.0806 12.7617 7.1198 11.1324 7.1203 11.1314

150-150 7.9637 12.6585 7.0091 11.0125 7.0153 11.0104

100-100-100 7.8899 12.5814 6.9221 10.9141 6.9296 10.9218

75-75-75-75 7.8888 12.5402 6.8540 10.8407 6.8613 10.8487

200-50-50 7.8906 12.5758 6.9235 10.9167 6.9194 10.9085

50-200-50 7.8937 12.5810 6.9473 10.9384 6.9380 10.9298

50-50-200 7.9021 12.5809 6.9382 10.9251 6.9388 10.9302

the 4-layered DNN has the significantly less MAE. In the cases of Spence and

Kingsbridge, the last four DNNs in Table 4.9 are believed having the same

performance in terms of MAE.

Table 4.10 presents the results when extra training examples and extra at-

tributes were added. Adding extra training examples is already shown to be

favorable to better accuracy in the earlier section and what is to note in this

table is that the improvement of all DNN models is about the same in terms

of both MAE and RMSE. The fact that all MAEs are reduced by about 1

MW and RMSEs by 1.6 implies that no specific structure of DNNs benefits

more from the added training examples. On top of extra training examples,
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Table 4.11: DNN Hidden Layer Dropout Rates

MAE (MW) NMAE (%)

Dropout sum min. max. µ σ

0.0 47.7501 5.53 7.97 6.69 0.96

0.01 47.7281 5.55 7.98 6.69 0.96

0.1 47.9628 5.64 8.00 6.73 0.95

0.5 51.0024 5.64 8.47 7.14 1.04

0.9 156.1770 12.08 28.53 23.62 5.01

adding the Wind Speed Cube attribute does not make any meaningful effect,

as shown by the last two columns in Table 4.10. This is probably because the

DNN has the ability to learn such simple non-linear relationships between

attributes, so similar feature engineering is not necessary.

The MAE result regarding different hidden layer dropout rates is given in

Table 4.11. It can be easily found that small dropout rates, less than 0.1 for

example, are preferred for wind power predictions.
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Chapter 5

Conclusion

Wind power prediction is a key component in wind power industry which is in

high growth rate. Accurate predictions can greatly help in lowering the cost

and improving the stability of wind power. Various prediction approaches

have been studied in research and applied in practice, among which the ma-

chine learning models are currently the most promising ones. Although there

has been a fair amount of research for machine learning models, such as ANNs

and SVMs, in wind power prediction, the different research context settings

made it difficult to evaluate the relative performance of these models. In

addition, as a new technique deep learning is likely to exhibit its strength in

this field, yet little work has been done regarding it.

In this study, we carefully collected the experimental data and ensured that

the datasets contain as many wind characteristics as possible. This compre-
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hensive empirical study considered nine models, seven of which are represen-

tative machine learning models, namely k-NN, REP tree, M5P tree, MLP,

RBF network, SVM and DNN. Among these models, the SVM demonstrated

the best overall performance and the k-NN showed its unique advantage for

wind power predictions with longer time horizons. The MLP had the ac-

curacy just second to the SVM while the DNN is slightly outperformed by

the MLP. Nonetheless, the DNN exhibited its potential for more abstract

predictions, such as 6-hour-ahead and spatial correlation predictions. For all

models selected in this study, more training data resulted in better perfor-

mance.

The above conclusion could be seen as reliable reference for future researchers

and practitioners. The new findings regarding the DNN in this study indi-

cates its limitations and potential, which provides guidance for prospective

research.

We believe that the future work should mainly focus on the application of

deep learning in the field of wind power prediction. In this study, the perfor-

mance of DNNs improved as the prediction time horizon increased. Mean-

while, it is widely accepted that the NWP can significantly assist in longer

term predictions [21]. Therefore, the combination of these two approaches

deserves more attention. Additionally, based on the findings of this study

and the fact that convolutional DNNs are good at revealing spatial topology
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structures, the convolutional DNN should be able to unleash its power in

spatial correlation predictions in the future.
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Table A.3: Original MAE – Time Horizons (MW)

1h 2h 3h 4h 5h 6h Total

Pers. 5.9068 9.4155 11.8795 13.8450 15.4445 16.8105 73.3018

LR 5.9009 9.6307 12.1132 13.9535 15.3979 16.5650 73.5612

k-NN 6.4910 9.0403 10.4944 11.4931 12.2107 12.8073 62.5368

REP 6.1198 9.7498 12.0526 13.6532 14.8429 15.7178 72.1362

M5P 5.8011 9.4191 11.9004 13.5569 14.8804 15.9088 71.4665

MLP 5.7698 9.3960 11.7866 13.5626 14.9416 16.0315 71.4882

RBFN 8.2420 10.7442 12.8192 14.4299 15.7052 16.7182 78.6587

SVM 5.5687 8.8687 11.0493 12.6781 13.9200 14.9354 67.0202

DNN 5.7911 9.4021 11.7018 13.3559 14.5696 15.4179 70.2383

Table A.4: Original RMSE – Time Horizons (MW)

1h 2h 3h 4h 5h 6h Total

Pers. 9.4848 14.5570 17.8826 20.4782 22.5963 24.3672 109.3661

LR 9.0173 13.7635 16.6081 18.6745 20.2412 21.4840 99.7886

k-NN 9.9292 13.4535 15.2561 16.4148 17.2534 17.9358 90.2427

REP 9.4589 14.2025 16.9688 18.9167 20.3499 21.4080 101.3048

M5P 8.9675 13.6123 16.4488 18.3708 19.8552 20.9815 98.2360

MLP 8.8739 13.5356 16.2850 18.2749 19.7827 20.9716 97.7236

RBFN 11.7876 14.9593 17.3729 19.1774 20.5583 21.6366 105.4921

SVM 8.8588 13.5530 16.4179 18.4678 20.0512 21.2947 98.6434

DNN 8.8774 13.5052 16.2179 18.1017 19.4052 20.3629 96.4703
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