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ABSTRACT 

The Monte Carlo method proposed by von Neumann and Ulam for solving 
linear equations is considered in this paper. It is shown that the 
primary estimate computation processes in this method can be viewed as 
the realizations of an absorbing Markov chain. Subsequently» the time 
complexity analysis of the algorithm is carried out using some results 
from the absorbing Markov chain theory. Two techniques, proper 
transition probability assignments and the truncation of random walks, 
are discussed for the time complexity reduction. Finally, the various 
schemes recently presented for the development of parallel Monte Carlo 
algorithms are shown to be applicable in implementing the method on 
parallel computers. It is shown that the time complexity of the method 
for estimating the solutions of a system of Ν linear equations on Ν·Κ 
processors, using Κ primary estimates for each of the unknowns, is 
independent of N. 
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1. INTRODUCTION 

One of the most fruitful fields of application of the Monte Carlo 

techniques, since long, has been the solving of linear algebraic 

equations. Another potential application of the same techniques has 

been the field of solving large system of integral and/or differential 

equations (see [13]). 

Von Neumann and Ulam were the first to propose a fundamental method 

(N-U method) for inversion of a matrix (this method was published by 

Forsythe and Leibler [10]). Later, Wasow also proposed a different 

method for the inversion and compared its efficiency with the N-U 

method. Opler [ 18 ] and Todd [21] have carried out the inversion of 

matrices on computing machines. Obviously, these methods can be used to 

solve linear equations. Akaike [1], Shrieder [19] and Blagoveshchenskii 

[7] have also proposed different methods for solving linear equations. 

All these methods of inversion have suffered from slow convergence. In 

this context, for accelerating the convergence of the N-U method, Halton 

[11] has proposed a technique, namely, Sequential Monte Carlo, which 

incorporates sequential improvement in the estimator used. Halton [12] 

has also proposed least-squares Monte Carlo techniques for solving 

inconsistent and overdetermined system of approximate equations. 

In this paper, we consider the N-U method for discussion since 

similar methods, since long, have been applied to solving integral 

equations, eigenvalue problems (see [18,19]), and many other problems, 

such as thermal multigroup transport equations [20], and moreover the 

Sequential Monte Carlo method by Halton [11] is also based on the N-U 

method. The time complexity results presented in this paper can be 

easily applied to the other Monte Carlo methods for solving linear 

equations as demonstrated in Bhavsar [4, Chap. 3]. 
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In the next section, we briefly review the N-U method, and in 

Section 3 a sequential algorithm for the method is presented. It is 

shown that the primary estimate computation (PEC) processes in this 

method can be viewed as the realizations of an absorbing Markov chain. 

Subsequently, the time complexity analysis of the algorithm is carried 

out using some results from the absorbing Markov chain theory. In 

Section 4, we propose two techniques for the time complexity reduction 

of the N-U method. It is shown in Section 5 that the N-U method 

possesses intrinsic parallelism at all the four levels discussed in 

[4,6]. Section 6 is devoted to the parallel algorithms for the N-U 

method. The various schemes for development of parallel Monte Carlo 

algorithms discussed in [6] are shown to be applicable in implementing 

the N-U method on parallel computers. Concluding remarks are presented 

in the last section. 

2. THE VON NEUMANN AND ULAM (N-U) METHOD 

The principal advantage of the N-U method is that, unlike classical 

methods for the solution of sets of simultaneous linear equations, it 

enables to estimate one component of the solution independently of the 

other components; when Ν is of the order of thousand or more, this can 

be very important. This method was first published in [10] and 

formalized in [13] as follows. 

Consider a nonsingular system of equations 

Ν 
Σ A · χ = b , r ε S = {1,2,..., Ν}. (1) . rs s r » » » ν / s=l 
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This equation can be written as a matrix equation Α.χ = b, and will have 

the unique solution given by 

χ = A_1b. (2) 

The equation (2) can always be put into the form 

χ = a + Hx, (3) 

where the spectral radius of H, p(H) < 1. In this case we have 
1 0 χ = (I-H) a = a + Ha + H a + ... + Λ + ... . 

0 9 

Γ tim 
= Σ H a, 
m=0 (4) 

and the Neumann series is absolutely convergent. 

Now, the Monte Carlo estimates of each of the unknowns in (3) can 

be obtained ind_ependently of the remaining unknowns. The procedure for 

obtaining the Monte Carlo estimates of an unknown is as follows. 

A set of random walks is defined on the augmented index set, S = 

{0,1,..., Ν}, the extra index value 0 corresponds to a "stop", i.e. it 

represents the termination index for the random walk. Let ρ denote 

the probability of transition from index r to index s, with ρ Φ 0 
IT s unless H =0. Then corresponding to each walk Γ = [r,s-,s_,...,s ,0], rs 1 2 m with r, s., s«,..., s Φ 0, the primary estimator for an unknown χ is 1 2 m r 

defined as 

χ (Γ) = Ζ · Ζ ... · Ζ *  Ζ η 9 (5) r rs, s.s0 s .s s 0* v ' 1 1 2 m-1 m m 

where for j Φ 0, Z ± j = a n d f o r 3 = z i 0 = ai/pi0* 

The secondary estimator for x^ is defined by the arithmetic mean of 

Κ primary estimates as 

Ν I W · ( 6 ) 

1=1 

which has the expectation E(Y ) = χ , if p(H+) < 1,(H+) = H + = |η I. 
r r r K V 'rs rs 1 rs' 
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3. A SEQUENTIAL ALGORITHM FOR THE N-U METHOD 

To carry out a step in the random walk from index si to index s2, 
η 

the index s2 can be found out as follows. Define q 1(η) = Σ P i n 
s l s2=0 

and then obtain s2 using a function φ(8ΐ,ξ), where ξ is a sample from Λ, 

as 

s2 = φ(3ΐ,ξ), (7) 

such that 

Φ(βΐ,ξ) = i, if qsl(i-D < c < q8l(i> <8> 

A sequential algorithm based on the N-U method is given below. It 

obtains the secondary estimates Y^, Y^,...» Υ β ΐ of the unknowns x^, 

x^, respectively. In the algorithm the variables are the same 

as in the earlier discussion. Λ is assumed to be an ideal random number 

generator. 

Algorithm 1 : A Sequential Algorithm for the N-U Method 

begin 

initialize Λ 

for i = 1 step 1 until Ν do 

Y ± 0 

for j = 1 step 1 until Κ 

X := 1; sl := i 

while sl φ 0 do pecstep (A,X,sl) end do 

Y. := Y, + X i i 
end do 

Y. := Y./K ι ι 
end 
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procedure pecstep (Λ, X, si); 

begin 

obtain a sample ξ from Λ 

s2 := φ (sl ,ξ); X := X. Z g l s 2 

sl := s2 

end 

If we obtain successive samples ξ ^ , ξ^,... , ξ ^ , from Λ to 

carry out i-th random walk (i.e., a primary estimate computation) for an 

unknown x^, and the random walk reaching the 'stop' index at the v-th 

sample, then the primary estimate will be given by 

x r cc±) = x r (e ( 1 ), ξ ( 2 ) c ( v )). (9) 
The following theorem characterizes the PECs in Algorithm 1. 

THEOREM 1. In the N-U method, the PECs for an unknown x i represent runs 

through a discrete-time, finite, homogeneous, absorbing Markov chain 

with state space S = {0, 1, 2, ..., Ν}, the state 0 representing the 

absorbing state, the transition probability matrix being given as Ρ = 

[ρ ]. with the initial state i. 

Proof. A PEC involves a random walk over finite states (equal to Ν + 1) 

with the transition probability to a next state depending only on the 

present state. The random walk terminates when it reaches state 0. 

Thus, the PEC process is a finite absorbing Markov chain. It is 

discrete-time since the state transitions occur at discrete time 

instants. Finally, the Markov chain is homogeneous because the 

transition probabilities do not depend on the earlier number of state 

transitions. Hence, the proof of the theorem. 
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3.1 Time Complexity Measure 

As can be easily seen from Algorithm 1, the execution time of the 

algorithm is primarily determined by the execution time of the PECs. In 

the following analysis, we will assume that the secondary estimate 

computation time is small enough to be negligible compared to PEC times. 

Further, we initially assume that 

Al: The execution time of procedure pecstep is constant. 

Subsequently, we will relax this assumption and show its implications to 

the complexity results. The execution time of a PEC is determined by 

the number of times the procedure pecstep is executed, which in turn 

depends on the number of state transitions (v) required to reach the 

absorbing state from a given initial state. Thus, the natural time 

complexity measure for PECs is the number (ν), which also can be 

considered as the duration of a random walk. 

In the ensuing analysis of the algorithms, it is assumed that the 

set of linear algebraic equations are given in the form of (3); this 

assumption can be justified in many applications of the N-U method (e.g. 

the solution of PDEs discussed in [6, 13]). 

3.2 Analysis of the Algorithm 

Curtiss [9] has carried out a theoretical comparison of the 

efficiencies of two classical methods (the Gauss elimination method and 

an iterative method) under some assumptions so that their comparison 

with the N-U method, which obtains an estimate of the solution (rather 

than the solution) is possible. Wassow [23] has investigated the mean 
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number of steps required for random walks in n-dimensional domains in 

the context of the Monte Carlo method. Wasow [24] has generalized these 

results by applying similar methods to the study of a moment generating 

function for a number of steps and its distribution function. Here, we 

use the results from absorbing Markov chain theory, that become appli-

cable due to Theorem 1, to carry out the time complexity analysis. 

The substochastic matrix Q, corresponding to the transition 

probability matrix £ is given as 

Q = [p^L i 0, (10) 
and the fundamental matrix F is given as 

F = (I - Q)"1, (11) 

where I is the identity matrix. The element F of the fundamental 

matrix gives the total number of times the chain will be in state j, if 

the chain has started in state i. 

THEOREM 2. In the estimation of an unknown x^ by the N-U method, the 

PEC times are discrete random variables with mean 

M± = [FU]±, (12) 
and variance 

σ2. = E(2FFdg) U - FU - FsqU]., (13) 

where F is the fundamental matrix, F,, and F are derived from F, and U 
dg sq 

is a unit vector. 

Proof: Follows from results of absorbing Markov chain theory [16, p. 

49], which become applicable due to Theorem 1. 

2 
REMARK 1. μ^ and σ^ of the PEC times for an unknown x^ are independent 

of N, the size of the system of linear algebraic equations. 



2 
THEOREM 3. The and σ.̂  of PEC times of an unknown x^ have the upper 

bounds as follows: 
1 

V* < (14) 

(1 - IIQIIJ 

2 2 

o ± < , (15) 
(1 - IIQIIJ2 

where ||q|| denotes the A - » norm of the matrix Q. 

N -1 Proof. By Theorem 2, μ. = [FU] = Σ F , where F = (I-Q) . For any 1 1 j = l 
absorbing Markov chain, (I - Q) has an inverse and we have [16, p. 46]: 

CO 
Σ 
k=0 

- 1 2 k F = (I-Q) = I + Q + Q + . . . = Σ Q , (16) 

where Q -*· 0 as k •+· ». Hence, 
N 2 V, - Σ [I + Q + Q + ...] 
j = l 1 3 

N 2 £ max Σ [ I + Q + Q +...] 

1 < i < Ν j=l ^ 
1 III + Q + Q 2 + ... I I 

£ LLILL+ IIQIL+ ! FQ 11OO+ ··· 

1 (17) 
(i - IIQIIJ 

which is the desired upper bound for μ^. 

Further, by Theorem 2: 

σ.2 = [(2F F, ) U - FU - F U]. χ dg sq Ji 
Ν N N 

= 2 Σ F. . F. . - Σ F. . - Σ F. . F 
j-1 33 j = l ^ j.i lJ ^ 

= J / I J (2FJJ - V - ̂  R ( 1 8 ) 
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Hence, 
Ν 

σ 2< Σ F (2F ) (19) 
j = l 3 n 

Ν Ν 
< 2 Σ F,. · Σ F.. (20) 

ij .-ι j=l ^ j = l 
Ν 

τ 
ij 

< 2( max Σ F,.)2 (21) 
l<i<N j=l 

Hence, we obtain the desired upper bound 
2 

i ,, Τι. ι 12 σ,2 < .. ..o ' (22) 
(1 - LLQLLÍ) 

LEMMA 1. In the N-U method, the PECs carried out to obtain an estimate 

of an unknown x. have i.i.d. execution times, ι 

Proof. The algorithm of each of the PECs of an unknown is the same and 

the computations in each of the PECs are independent of each other. 

Moreover, the PEC times are random variables by Theorem 2. Hence the 

lemma follows. 

In the ensuring time complexity analyses, the notations used are similar 

to those used in [15J. 

THEOREM 4. The sequential Algorithm 1, in carrying out Κ PECs for an 

unknown x^ on a sequential computer with one processor, has the expected 

time complexity 

E(Tt (1, Κ)) = Κ · u v (23) 

with the variance 

Var (T± (1, Κ)) = Κ · σ 2, (24) 

Proof. Follows from Lemma 1 and Theorem 2. 
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COROLLARY 1. The sequential Algorithm 1 has 0(K) expected time com-

plexity in carrying out Κ PECs for an unknown 

2 
Proof. Since μ^ and are independent of Κ as well as Ν (see 

Remark 1), the result follows. 

REMARK 2. It is evident that the time complexity of the N-U method in 

the estimation of an unknown in a system of Ν linear algebraic equations 

is independent of N, a fact which is well known [11, p. 33]. 

THEOREM 5. The sequential Algorithm 1, carrying out Κ PECs for each of 

the Ν unknowns in a system of Ν linear algebraic equations, has the 

expected time complexity 

Ν 
Ε(Τ(1, Κ, Ν)) = Κ · Σ μ , (25) 

i=l 1 

with the variance 

Ν 2 
Var (Τ(1, Κ, Ν)) = Κ · Σ σ/. (26) 

i=l 1 

Proof. Since PECs for each of the unknowns are carried out independent 

of each other in Algorithm 1, the Theorem directly follows from Theorem 

4. 

REMARK 3. The solution of the system of linear equations in (3) 

involves the inversion of matrix (I - H) In order to determine the 

expected time complexity of the N-U method in solving (3), it is 

necessary to invert the matrix (I - Q) to find out the μ 's. The 
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matrices Q and H are of the same size, i.e. (Ν χ Ν). Hence, the problem 

of determining the expected time complexity of the N-U method has the 

same time complexity as that of the problem being solved with the N-U 

method. This justifies the need to obtain upper bounds on the mean and 

the variance of the duration of the random walks to get an appraisal of 

the time complexity and therefore such bounds are obtained in this 

section. 

COROLLARY 2. The sequential Algorithm 1 has the bounds on the expected 

time complexity as follows: 

K*N 
E(T(1, Κ, N)) < · (27) 

(I - IIQIIJ 

with the variance 
2KN 

Var (T(l, Κ, N)) < · (28) 
(I - LLQLLJ 

Proof. Follows from Theorems 3 and 4. 

COROLLARY 3. The sequential Algorithm 1 has 0(N) expected time 

complexity in carrying out a fixed number of Κ PECs for each of the 

unknowns in a set of Ν linear algebraic equations. 

Proof. Follows from Corollary 2. 

REMARK 4. The expected time complexity of the N-U method in solving a 

system of Ν linear algebraic equations is only 0(N), whereas for direct 
2 780 

methods the time complexity has been reported [25] to be 0(N * ), and 
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2 for iterative methods it is 0(N ), (see [22]). However, the constant 

implied in the time complexity of the N-U method can turn out to be 

quite large and hence the N-U method may be efficient compared to the 

other methods only for large values of Ν (see [9] or [14, p. 85]). 

4. ALGORITHMS FOR <fr(sl,g) 

In the procedure pecstep in Algorithm 1, we did not specify the 

details of the function φ(βΐ,ξ) and we assumed that the execution time 

of the procedure is constant. However, the execution time of this 

procedure will usually turn out to be a random variable unless the 

transition probabilities are assigned properly and an efficient 

algorithm is used to implement φ(βΐ,ξ). Here, we present two algorithms 

for φ(si»ξ) and discuss their implications to the time complexity of 

Algorithm 1. 

Consider the matrix Η with all the elements as non-zero (i.e. a 

dense matrix). Then, the substochastic matrix Q of the transition 

probability matrix Ρ will have all the elements nonzero, because υ Φ 0 
— *rs 

unless Η = 0 (see Section 2). Thus we will have (N + 1) possible next Γ s 
states for any given transient state in the absorbing Markov chain 
defined in the N-U method. 

In the N-U method, it is not specified how the various transition 

probabilities should be selected except for the requirements that 

ρ Φ 0 unless Η = 0, and Σ ρ . = 1 for any state sl e S*. Hence, 
r S r s s2 ε S s l s 2 

the transition probabilities can be selected so that it leads to a 

smaller execution time of Algorithm 1. Here, we assume that the 

selection of the transition probabilities has already been carried out. 

Then, we divide the range of ξ in the interval [0, 1] into (N + 1) 
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segments corresponding to the (N + 

a present state si, as shown in Fig. 

equal to the values of the transition 

si. 

1) possible next states, given 

1, and make these segment lengths 

probabilities for the given state 

4.1 Algorithm 2 for <Ksl,C) 

Given the present state si, the next state s2 can be determined as 

follows. Obtain a sample ζ from Λ and if it falls in the interval 

q s l - 1) < C < qsl(*), * ε {1, 2, ..., Ν + 1>, 

then we have s2 = (λ - 1), so that the function <Ksl,£), in the line 2 

of procedure pecstep in Algorithm 1, can be as given below. 

Algorithm 2. An Algorithm for Ήβΐ,ξ) 

function <Hsl,C) 

begin 

if ξ < qgl(l) then Φ 0 

else if ξ < qsl(2) then := 1 

else if ξ < qsl(N) then Φ := (N-l) 

else Φ := Ν 

end 

In Algorithm 2, the probability that the sample ξ falls in interval 

q - 1) 1 € K q η(A) will obviously equal the value of ρ s^ si si, {χ*  — 1) 
because the segment lengths are equal to the transition probabilities. 

Let ν . denote the number of comparisons required in Algorithm 2 to 
S L· 

determine the next state s2, given the present state si. Then, the 



-14-

expected value of ν will be 

Ν 
E(Vsl> " J i 1 ' Psl,(i - 1) ( 2 9 ) 

and the variance of will be given as 

Var (vel, - ^ i ' - P e ! , ^ , N 2 2 
- Ε ( v s l>. (30) 

Let v* denote a random variable, representing the total number of 

comparisons required in the execution of the Algorithm 1 in obtaining a 

primary estimate of an unknown x^, i.e. when the absorbing Markov chain 

has the initial state equal to i. As already stated in Section 3.2, 

, the (ij)th element of the fundamental matrix, gives the expected 

number of times the chain will be in transient state j, if the chain is 

started in state i. Thus, the expected value of v* will be given as 

Ν 
Ε (ν*) = Σ {F Ε(ν )}. (31) 

j = l 3 3 

Example 1. Consider the transition probability assignment such that all 

the transition probabilities are equal, i.e. 

1 _ 
ρβΐ,β2 --snrry s l E S ' s 2 £ S ( 3 2> 

Then for sl ε S we will have 

E<vsi> = T r W 1 8 8 1 · <33> 
and 

1 N o M 2 

V » ( V = οπγίτ ¿ 1 - î -
Ν · (Ν + 1)·(Ν + 1) Ν 2 

(Ν + 1) · 3 

Ν (Ν + 2) 
12 (34) 
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The fundamental matrix F is obtained as follows. The transition 

probability matrix £ will be given as 

1 0 0 0 
α α α α 

Ρ = α α α • » 

α α α α 

1 

(35) 

α (Ν + 1) χ (Ν + 1) 

-, and the substochastic matrix Qjj χ N will be given by where α = 
(Ν + 1) 

the lower partitioned matrix. The fundamental matrix, F, will be 

F = (I-Q) -1 

(1-a) -a 

-a (1-a) 
-a 

-a 
(36) 

-a -a (1-a) Ν χ Ν 

(1 - Na) 

1 - (N-l)a 

1 - (N-l)a 

1 - (N-l)a 

= I + 
(1 - Na) ̂ N χ Ν (37) 

where I is the identity matrix and 

elements equal to 1. Now, if the 

expected number of state transitions 

be 

EXT is a matrix with all the Ν χ Ν 
chain is started in state i, the 

in the chain until absorption will 
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( — M 
Ν Ν + 1 
I F. » 1 + Ν Α 

= (Ν + 1) (38) 

for any state i ε S. 

Thus, the expected number of comparisons required in Algorithm 1 to 

obtain a primary estimate of x¿, if φ(&1,ξ) is evaluated using Algorithm 

2, will be given by 

E ( v * ) = Ν ( Ν ^ _ 0 , ( 3 9 ) 
si 2 

where si ε S. 

This implies that if the assumption Al is not valid (i.e. when the 

execution time of procedure pecstep is not constant) in the present 
2 

case, the PEC times will have 0(N ) time complexity and they will no 

longer be independent of N, as stated in Remark 1. Moreover, the 

complexity of Algorithm 1 will turn out to be 0(N ), rather than 0(N) as 

stated in Corollary 3. Thus, it is seen that the transition probability 

assignment can have serious implications on the time complexity of 

Algorithm 1. 

4.2 Algorithm 3 for φ(5ΐ,ζ) 

To eliminate the dependence of PEC times on Ν in Example 1, we 

propose Algorithm 3 for φ(si » Ç)» given below. Here we make use of the 

fact that all the transition probabilities are equal for all the 

transient states. We determine the next state s2 by multiplying 

fraction ξ by (N + 1), add one to it and truncate this number so that 

the index for the next state is obtained directly. Obviously, in this 

algorithm, the execution time of φ (si, ζ) will be constant and 
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consequently the execution time of procedure pecstep will turn out to be 

constant, so that the assumption Al remains valid and all the results 

derived earlier in Section 3.2 also remain valid. 

Algorithm 3. An Algorithm for Φ(&1,ζ) 

begin 

Φ := L ξ (N + 1) + 1 J 
end 

REMARK 5. It is seen from the previous discussion that the transition 

probability assignment and the algorithm for φζβΐ,ξ) are very crucial to 

the time complexity of the N-U method and they can change the time 

complexity drastically, as illustrated in Example I, from 0(N) to even 
3 

0(N ). Hence, the transition probability assignment should be carried 

out properly so that it is convenient computationally and at the same 

time the expected lengths of the random walks are not excessively large. 

Moveover, the algorithm for Φ (s 1, ξ) should be designed in such a way 

that it is efficient. 

5. TIME COMPLEXITY REDUCTION TECHNIQUES 

In this section, we discuss two techniques for the time complexity 

reduction of the N-U method: (i) Transition Probability Assignment, and 

(ii) Truncation of Random Walks. The assignment of transition 

probabilities is only briefly discussed by Curtiss [8, p. 225 and p. 

227]. Here, we shall discuss this technique in greater detail and show 

clarly the interrelationship between the transition probability assign-

ments, the duration of random walks (which primarily determine the time 
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complexity as seen in the last section) and the variance of the estima-

tors. An illustrative example is also included. We will then introduce 

the second technique and discuss the effect of truncation of random 

walks on the mean and the variance of the estimators. 

5.1 Transition Probability Assignment 

As seen in Section 3.2, the expected duration of the random walks 

depends on the stochastic matrix P, i.e. on the transition probabili-

ties. Intuitively, the smaller the absorption probabilities, the larger 

will be the expected duration of the random walks and vice versa. 

Although the expected values of the estimators are immune to the changes 

in the transition probability assignments, the variances of the 

estimators are affected. 

It is known that the variance of the estimator for the unknown χ 

is given as [8, p. 223] 

Var(X¿) = [(I - B)"1 R a 2 - ((I - H)"1 a)2]., -1 (40) 
where 

R 

1/ 

η (Ν χ Ν) 

Ν 
1 - Σ Ρ,· J > 
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and Β is the matrix with elements given by 

Β . = H?./p... ij 13 
In (40), the first term varies depending on the probability assignment 

and the second term is constant (equal to the solution). 

Since the transition probability assignment determines the duration 

of the random walks, i.e. time complexity of the N-U method, as well as 

the variance of the estimator, in order to compare two probability 

assignments we define the efficiency of Monte Carlo techniques. Since 

the variance of the estimator is a measure of the magnitude of the 

errors incurred in the estimation procedure, the efficiency of a Monte 

Carlo process is defined as being equal to the inverse of the product of 

the variance of the estimator and the expected time complexity. The 

interrelationship between the transition probability assignments and the 

variance of the estimators is illustrated through the following example. 

Example 2. Consider the nonsingular system of equations 

χ = Hx + a (41) 

with Η = 3 < 1; i, j - 1» 2»..., Ν, and 'a' being the vector with all 

elements equal to one, so that the solution of (41) is given by 

1 
X, = , i = 1, 2, ..., Ν. (42) 
1 (1-N$) 

Now, let the transition probability assignments be made so that the 

transition probabilities among the transient states are all equal to 

α < 1/Ν» i.e. the transition probability matrix is given by 
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Ρ = 

(1-Να) 

(1-Να) 

. 0 

α 

α (43) 

(1-Να) α ... α (Ν+1) χ (Ν+1) 

The expected duration of the walk lengths under the above assignments 

will be (see Example 1). 

1 
E(v ) = (44) 

(1-Να) 
2 

Further, the matrix Β will have all its elements equal to Ύ s ß /α and 

the inverse of (I - B) will be 

1-(Ν-1)γ 

(I - B) -1 
(1-Νγ) 

1-(Ν-1)γ 

1-(Ν-1)γ Ν χ Ν 
(45) 

with the diagonal matrix R having all its diagonal elements equal to 

1/(1 - Νγ). It can be easily verified that for i = 1, 2, ..., Ν, the 

first terms of (40) will be 

-1 2 1 
[(I - B) * R * a ¿

]± = 

(1-Να) (1-Νγ) 

α 

(1 - Να) (α - Νβ2) 
(46) 
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Thus, the variance of the estimator X^, for the unknown x^, i = 

1,2, . Ν , will be given by 

α 1 
Var(X ) = - . (47) 

(1 - Να)(α - Νβ ) (1 - Nß)Z 

Let us consider a specific case of equation (41) with Ν = 10 and 3 

= 0.05. In this case, effect of the changes in the transition proba-

bility assignments is depicted in Fig. 2. It is seen that, when α = 

0.05, i.e. equal to 3, the variance of the estimator reduces to zero. 

This is not surprising because this case effectively turns out to be the 

case of unbiased importance sampling with zero variance. Moreover, this 

is the ideal probability assignment and any deviation from this leads to 

the decrease in the efficency of Monte Carlo method. 

The above example demonstrates that the transition probability 

assignment is very crucial in determining the expected time complexity, 

the variance of the estimators and thereby the efficiency of the method. 

Thus, there exists an ideal transition probability assignment which 

leads to zero variance of the estimators and this assignment corresponds 

to the unbiased importance sampling with zero variance. It is known 

[8] that such a sampling procedure can be devised only when the solution 

is known a priori; of course, in such a case we will not resort to the 

Monte Carlo (or any other) method at all! In conclusion, if the form of 

the solution is known, it is possible to choose the transition proba-

bilities in such a way that the variance of the estimators is minimized. 

5.2 Truncation of Random Walks 

As discussed earlier, the time complexity of the N-U method depends 

on the duration of random walks, and this duration could be arbitrarily 



-22-

large » In order to reduce the time complexity, we can devise a 

terminating rule for the random walks, say the walk lengths cannot be 

greater than η steps, depending on the rapidity of the convergence of 

the Neumann series. 

If the random walks are limited to η steps, the expected duration 

of the random walks starting from a transient state i will be 

Ν 
E(v") = Σ [1 + Q + Q + ... + Qn].. 

j-i 1 3 

= Σ [(i + Q + Q 2 + ...) - ( Q n + 1 + Q n + 2 + ...)1 
j = l 
Ν 
Σ 

j = l 

ij 

= Σ [(I - Q n + 1 ) (I + Q + Q 2 + ...)] ij 

Ν 
- Σ [(I - Q n ) (I - Q) ] , (48) 
j = l 

and the resultant reduction in the expected time complexity will be 

Ν « 
E(v ) - E(v") - Σ ( Σ Qm).. . (49) 

1 1 j=l m=n+l X J 

This truncation of the random walks results in considering only first 

(n+1) terms of the Neumann series in (4). In this case we will obtain a 

biased estimate of the unknowns, because the expected value of the 

estimators will be represented by the vector χ', defined by 
Λ 

x' = a + Ha + H a + ... + Hna 

= [(I - H n + 1 ) (I - H)"X]a, (50) 

and the bias introduced for an unknown x. will be 
1 

CO 
x ± - X* = Σ [Hma]i . (51) 

m=n+l 
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Thus, the bias introduced depends on the rapidity of the convergence of 

the powers of H to zero and the reduction of time complexity is 

determined by the convergence of the powers of matrix Q to zero. It is 

well known that the average rate of convergence of the powers of a 

convergent matrix depends on its spectral radius. As the minimum row-

sum approaches unity for any convergent matrix, its eigenvalue of 

maximum absolute value, i.e. its spectral radius, approaches unity and 

the rate of convergence to zero of the powers of that matrix becomes 

smaller and smaller (see [22]). 

Further, in the case of truncated random walks the variance of the 

estimator (X^) for x^ will be 

Var (X*) = {[(I - B n + 1 ) (I - B) 1 Ra2] - [(I - Η) (52) 

Thus, the variance of the estimator decreases as the truncation limit η 

for the random walks is decreased (of course, at the cost of an increase 

in the bias). The reduction in variance of the estimator will be 
00 

Var (X ) - Var (Xn) = Σ [Bm R a2].. (53) 
1 i m=n+l 1 

6. INTRINSIC PARALLELISM IN THE N-U METHOD 

The N-U method contains parallelism at all the four levels 

discussed in [6], as detailed below: 

1. Parallelism between the computations of variables. Since the 

estimation of each of the unknowns can be carried out independently 

of the other unknowns (see Section 2), their computation can be 

carried out in parallel. Further, it can easily be seen that these 

computations are well suited for implementation on SIMD and MIMD 

computers. 
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2. Parallelism in the secondary estimate computation. The parallelism 

in the secondary estimate computation is as discussed in [6]. 

3. Parallelism between the different PECs. For each of the unknowns, 

the required Κ PECs are completely independent of each other and 

consequently they can be executed in parallel. 

4. Parallelism in a PEC. In the N-U method, the computation of 

<Ksl,€), as given in Algorithm 2, involves a number of comparison 

operations and these comparisons can be carried out in parallel. 

7. PARALLEL ALGORITHMS FOR THE N-U METHOD 

The intrinsic parallelism in the N-U method had remained 

unexploited and we exploited it to develop some parallel algorithms for 

the method [3, 8]. 

In the N-U method, the PEC times primarily determine its time 

complexity because each PEC consists of a number of steps in a random 

walk and each step in turn consists of a sequence of operations. Hence, 

the intrinsic parallelism at levels 1 and 3 can be considered to be of 

primary importance. 

The determination of the exact mean and the variance of the PEC 

times is as time consuming as the solution of the given problem itself, 

i.e. solution of (2) or (3), and a priori determination of their 

probability distributions is almost impossible. This implies that in 

the analysis of algorithms, we should attempt at deriving the 

distribution-free bounds requiring only the knowledge of the bounds on 

the mean and the variance of the PEC times. 

Thus, we conclude that the assumptions and the approaches given in 

[6] for the development of parallel algorithms are directly applicable 
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to the design and analysis of parallel algorithms for the N-U method. 

Consequently, all the schemes for parallel algorithms presented in [6) 

can be directly adopted, especially if the estimation of only one 

unknown is to be carried out. Based on these schemes, parallel algo-

rithms can easily be developed for the N-U method (see [4]). These 

parallel algorithms can be analysed for their time complexity by substi-

tuting the exact values of the mean and variance of the PEC times in 

(12) and (13), respectively, or alternatively the bounds given in (14) 

and (15) can be substituted. 

In the ensuing subsections, we briefly discuss the developments of 

parallel algorithms for the N-U method using the static computation 

assignment (SCA) and the dynamic computation assignment (DCA) schemes 

discussed in [6]. An SCA SIMD algorithm is given to obtain Κ primary 

estimates of each of the Ν unknowns in parallel. 

7.1 SCA Parallel Algorithms 

All the four SCA schemes given in [6] are directly applicable for 

the parallel implementation of the N-U method. If Ρ < Κ, it is advis-

able that the estimation of only one unknown is initiated in parallel, 

otherwise the time overheads which will be incurred in keeping track of 

how many estimates have been obtained for each of the unknowns will be 

large (this is especially recommended for SIMD algorithms). If Ρ > K, 

it is possible to estimate more than one unknowns in parallel. 

In SCA Scheme 4 discussed in [6], we initiate more than Κ PECs for 

an unknown and choose the earliest Κ PECs to be completed. This implies 

that, effectively, we are limiting the number of terms considered from 

the Neumann series in (4). Consequently, we would obtain a biased 
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estimate of the solution, as discussed in Section 5.2. 

Analysis of an SCA Algorithm 

We assume that Κ primary estimates are required to be obtained for 

each of the Ν unknowns and we use Ν·Κ processors in the parallel 

algorithm. In the SCA Scheme 3 (see [6]) algorithm, we initiate all the 

required Κ·Ν PECs in parallel. We assume that the function φ(8ΐ,ξ) for 

a sl state can be φ := .·ξ| + 1, where Ψ sl » 1, 2, ..., Ν, are 
sl J sl 

constants. 
It is easily seen that the execution time of the algorithm is 

determined by the largest PEC time of Ν·Κ PECs, and it will correspond 

to the maximum of the extreme order statistic of the Ν sets of PEC 

times, each set consisting of Κ PEC times. 

Let the upper bounds on the mean and the standard deviation of the 

duration of the random walks in (14) and (15) be denoted by μ' and σ', 

respectively. Then the bounds on the expected time complexity can be 

easily obtained as follows (see [6]): 

Κ - 1 
μ' < Ε (T(NK, NK)) < μ1 + — = = Γ σ' . (54) 

/2Κ - 1 
Since μ' and σ' are independent of Ν, we obtain the following. 

THEOREM 6. The expected time complexity of the N-U method, implemented 

on N*K processors to obtain Κ primary estimates of each of the Ν 

unknowns, is independent of N. 
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7.2 DCA Parallel Algorithms 

Since both of the DCA schemes discussed in [6] are directly 

applicable, the parallel algorithms can easily be developed for the N-U 

method, and hence these algorithms are not discussed here. 

In the DCA Scheme 1 (see [6]), when the required Κ PECs are 

completed, (P-l) incomplete PECs get aborted and this leads to wasteful 

utilization of resources. However, for the N-U method this comment 

needs to be revised. We can consider the incomplete PECs as 

representing the truncated random walks as discussed in Section 4. 

Then, if the bias in the estimator due to this truncation is tolerable, 

the incomplete PECs can be considered. In such a case, if only Κ 

primary estimates are desired, we can terminate the computations when 

the (Κ - Ρ + l)-th PEC is completed. Obviously, this will reduce the 

execution time of the algorithm, as well as utilize the resources 

efficiently. Such a situation also arises in the SCA Scheme 4. In 

these cases the modifications in the time complexity results are 

obvious. 

It is evident from the above discussion that DCA Scheme 2, designed 

specifically for increasing the resource utilization in MIMD computers 

for the DCA schemes, will not be of any utility. 

8. CONCLUSION 

In this paper, we have considered the design and analysis of 

sequential and parallel algorithms for the Monte Carlo solutions of 

linear algebraic equations, using, in particular, the fundamental method 

by Von Neumann and Ulam. This method was selected for the discussion 

because of its applicability to a variety of problems. 
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It was shown the the PEC processes in the N—U method can be viewed 

as the realizations of an absorbing Markov chain. This result was 

subsequently used to derive the expectation and variance of the time 

complexity of the N-U method. Although the N-U method has 0(N) time 

complexity, it can be efficient compared to the direct and iterative 

methods for only large values of Ν due to the large implied constant. 

The direct comparison of the computational efforts required for the N-U 

method and the direct and iterative methods is not possible because of 

the stochast ic convergence of the method (see [9]). 

It was demonstrated that the time complexity of the N-U method can 

adversely get affected due to certain transition probability 

assignments, because the time complexity of the function φ(si,ξ) for 

determining the next state transition depends on the transition 

probabilities. With two examples it was shown that the time complexity 
3 

of the N-U method can change from 0(N) to 0(N ). 

Two techniques for the reduction of time complexity of the N-U 

method were presented. For the proper transition probability 

assignments we have illustrated the inter-relationship between the 

transition probability assignments and the resulting variance of the 

estimators. We have shown that an ideal transition probability 

assignment exists and it corresponds to the unbiased importance sampling 

with zero variance. Unfortunately, such an assignment could be devised 

only when the solution is known a priori. In the second technique, the 

truncation of random walks, it was proved that although lowering the 

truncation limit decreases the expectation and variance of the time 

complexity, this is achieved at the cost of an increase in bias of the 

solution. 
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In the second part of the paper, we have mainly discussed the 

intrinsic parallelism in the N-U method and its exploitation in the 

development of parallel algorithms. It was shown that the N-U method 

possesses intrinsic parallelism at all the four levels discussed in 

[4,6]. All the schemes for parallel algorithms given in [4,6] were 

found to be applicable to the development of parallel algorithms for the 

N-U method. For an SCA scheme algorithm, it was shown that by using 

(NK) processors to obtain Κ primary estimates of each of the Ν unknowns, 

the expected time complexity is independent of N. This is a significant 

result when compared to the known parallel algorithms for solving linear 

equations (see [21]) for which even the lower bound is about (2 log^N). 

The parallel algorithms based on other schemes can be developed easily 

along similar lines. Although in this paper we have considered only the 

N-U method, we believe that the techniques presented in this chapter are 

general enough to be applicable to the Monte Carlo solutions using other 

methods. 
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Figure 1. A possible segmentation of the range of ξ, the real unit 
interval [0, 1], 
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