
A SEARCH ALGORITHM FOR FINDING
THE SIMPLE CYCLES OF A D I R E C T E D GRAPH

BY

LEROY JOHNSON

T R 7 4 - 0 0 L FEBRUARY 1974

A SEARCH ALGORITHM FOR FINDING

THE SIMPLE CYCLES OF A DIRECTED GRAPH

LeRoy Johnson

University of New Brunswick

Fredericton, Canada

TR74-001, February 1974

ABSTRACT

Two efficient algorithms, that admit each simple cycle

once in searching the ares of a digraph, are presented and a proof

of the algorithms provided. The first algorithm is nonadaptive

while the second is an adaptive one. Since they extract cycles

directly, they require less storage than Weinblatt. Since the

method of search of the first is more efficient than Tiernan, it

is faster than Tiernan. An example used by Tiernan is given for

comparison. The speed is discussed in relation to number of

vertices, arcs, and simple cycles. The storage requirement is

0(n). The adaptive version has a theoretical speed bound by

O(c.m.n), where c is the number of cycles, m the number of arcs,

and η the number of vertices. Both algorithms are bounded by

0(N .m) on the complete graph where Ν is the number of cycles

of the complete graph.

- 1 -

1. INTRODUCTION

In recent years many papers have been written that consider

algorithms for finding cycles of graphs and digraphs or that require

such algorithms [2,3,4,5,6,7,8,10] .

For graphs one approach has been to generate a fundamental

set of circuits and, since it is known for undirected graphs that all

linear combinations of a fundamental set produce all the circuits,

then to generate the set of simple circuits from this result. Unfor-

tunately, this result does not apply to digraphs and so other methods

have been proposed.

Recently, notable algorithms have been presented by Tiernan [8]

and Weinblatt [9] which apply search techniques to find the simple cycles

of digraphs. Tiernan claims that he only considers each cycle once.

This is correct in that he only finds or reports a cycle once; however,

in his algorithm the same cycle may be found implicitly many times.

The author's algorithm also reports a cycle only once and may find a

cycle a number of times but not so many as Tiernan.

Weinblatt examines each arc only once but does not find all

cycles directly. The remaining cycles are found by combining parts

of previously discovered cycles with a part of the current path being

searched. The time saved by efficient search (better than ours) is

lost in searching the constructed cycles and paths which must be saved

in order to generate all the simple cycles; this results in increased

storage requirements.

- 2 -

2. BACKGROUND

For our purpose a digraph D = <V,A> is composed of two sets,

a set of vertices V and a set of arcs A where A ç V χ V.

A path from vertex v^ to v^ is an ordered sequence of ver-

tices (νι»ν2» * · · s u c h that for v^ and i-n the sequence

<v^,vi+1>eA. A path whose first and last vertices coincide is called

a cycle and any path which has no repeated vertex is said to be simple.

A cycle is simple if no vertex except the last is repeated. Some authors

give the term "elementary circuit" for our simple cycle, however, we

prefer the prefix simple to that of elementary since it is obvious from

elementary considerations that it is more simple.

Cycles which describe the same set of arcs will not be con-

sidered to be distinct, we can of course uniquely represent simple

cycles by assuming they begin on the lowest ordered vertex, assuming

some ordering on V. We shall say that a cycle (ν ^ , ν ^ , · · · b e g i n s

on ν .

3. THE ALGORITHM

We find it convenient and we believe enlightening, to provide

two statements of the algorithm; one a formal English version which

usually achieves clarity at the expense of a certain amount of ambiguity.

The second version is an illustration of how the algorithm might be

specified unambiguously to a computer using APL.̂ "

A Fortran version is available from the author.

- 3 -

In essence the algorithm begins at some distinguished vertex

called the KEY and begins to search out a path originating on KEY while

it remembers the path in a pushdown stack. We store the path as a

sequence of vertices since for our definition of a digraph this is

sufficient to describe a path; however, we could use arcs, or even arcs

and vertices to describe the path.

Before adding a vertex to the stack we check that it is not

in the stack so that the path we search will be simple.

If the vertex is already in the stack then we have found a

cycle. A simple test on information generated by the algorithm deter-

mines if this is our first discovery of this cycle. A cycle is only

reported when it is first discovered. Suppose all paths originating

on KEY have been searched, then if there is a vertex that has not yet

been examined it becomes a new KEY and the procedure is repeated until

all vertices have been examined.

The digraph of Figure 1 was used as an example by Tiernan

and we also use it for our example to facilitate a comparison with his

algorithm. Figure 2 illustrates the condition of the stack VS at each

step and square brackets indicate a cycle was found and that the vertex

is not entered on the stack. With reference to Tiernan's example, our

stack is evaluated 13 times (using his method of recording) as compared

to 29 times by Tiernan's method.

- 4 -

ALGORITHM: DCYCLE

Comment : Let D = <V,A>. Let VS and OS be pushdown stacks and

V,A,A1 sets.

1 : Initialize

VS •+• 0; OS 0; AT-t- 0

KEY •*• ν, for some ν e V

2: Stack

VS +• ν, VS

3: Advance

3.1 Find arc <v,w>eA, set

A A - {<v,w>}

Α'«- A1 υ {<v,w>}

If there does not exist such an arc, go to Step 5:Retreat.

3.2 If w 4 VS, ν -i- w and go to Step 2:Stack.

3.3 If w € VS and w 4 OS, go to Step 4:Report Cycle.

3.4 Since w e VS and w e OS, we cannot report this cycle;

go to Step 3:Advance.

4 : Report Cycle

4.1 CYCLE -f- Copy head of VS down to w.

4.2 Output CYCLE.

4.3 Go to Step 3:Advance.

Retreat

5.1 Delete ν from top of VS and place on OS.

5.2 Replace arcs that originate on v;

A ·+• Α υ {<v,x> }

A'-«- A' -{<v,x>} for all such x.

5.3 If VS ? 0, then set ν to the top of VS and go to Step 3:Advance.

Obtain Next KEY

6.1 Select vertex veV such that v¿OS, if there is none, Stop.

6.2 KEY +- ν

6.3 Go to Step 2:Stack.

- 6 -

An APL Implementation

V DCYCLE G

[1] ff+l+pG

[2] TPY+Hpl

[3] VS+0

[4] KFY+-1

Γ 5] START-.PF+KFY

[6] PS+IlpKFY-1

[7] STACK: VS*-PFyVS

Γ 8] CO:PPN+PN

[9] EXTEND : PN+PS Γ PNI + (PS Γ ΡίΠ + , G Γ Pli ;]) 11
[10] +(ΡΝ>Ν)/RETREAT

[111 PSÏPPhn+PP?

[123 -+(~Piï€VS)/STACK

[13] -*(TRYt Pff] = 0) /RETRY

[1U] ft REPORT CYCLE

[15] (VS \ PN) + VS

[16] RETRY : PN+-PPN

[17] EXTEND

[18] PETREA Τ : VS+1 + VS

[19] PS IPP m*· KEY- 1

[20] Rl:TRY[PPtn<-0
[21] PN+ltVS

[22] + (P//*0)/<70

[23] -U^JOT+rpy ι D/STAPT

V

- 7 -

5 3

Fig. 1 A geometric representation of a digraph

- 8 -

VS ACTION

1
KEY 1

1 2
1 2 [2]1 Report Cycle (2,2)
1 2 3
1 2 3 5
1 2 3 5 [1] Report Cycle (1/2,3,5,1)
1 2 3
1 2
1 2 4
1 2 4 3
1 2 4 3 5
1 2 4 3 5 [1] Report Cycle (1/2,4,3,5,1)
1 2 4 3
1 2 4
1 2
1
0

1 Note [v] is not added to stack.

Fig 2 Condition of Stack when searching digraph of Fig. 1 from
Vertex 1.

- 9 -

4. PROOF OF THE ALGORITHM

An algorithm may be defined as a procedure that halts, so

we must show that our algorithm does indeed execute the procedure

claimed and requires but a finite number of steps to do so. Since

the algorithm is known to sometimes examine a cycle more than once,

we must insure that it can never enter a loop with no exit .

In the following we assume that D is connected; otherwise we

merely apply the algorithm to each component if D is not connected.

Lemma 1 If D is finite, then the procedure of the algorithm halts

after a finite number of steps.

Proof: Consider a vertex ν on the top of the stack; by Step 3,ν can

only remain on the top of the stack for a finite number of

operations. Suppose ν is not removed, then some v'is added.

Since a vertex can only occur on the stack once and there

are a finite number of vertices, there must exist a vertex u

that is the last vertex that can be placed on the stack. Now

by Step 3>u must be removed.

Suppose now that every vertex v1 that can follow ν on the stack

has been removed, then ν is again on the top of the stack and

by Step 3 no vertex can be placed on the stack so that ν must

then be removed.

Thus the first vertex on the stack, KEY, must be removed after

a finite number of steps and Step 6 entered. Since a new key

- 10 -

cannot be a vertex that has been on the stack, the procedure

must halt after all vertices have been removed from the stack.

Φ

Lemma 2 Every vertex is placed on the stack.

Proof : Assume that the Algorithm has stopped. Suppose u is not placed

on the stack, then since it has not been removed, u 4 OS.

However, then by Step 6 (a) the Algorithm has not stopped.

Contradiction.
Φ

Lemma 3 Every cycle found that begins on ν is reported before ν has

been removed from the stack.

Proof : Assume that ν is in the stack VS. Since every path from ν is

examined before ν is removed from the stack every path that

ends on ν will be found. Since ν has not been removed from

the stack ν 4 OS and the cycle that begins on ν is reported.

Φ

Lemma 4 The Algorithm reports a cycle exactly once.

Proof : If ν has not been removed, then no cycle is repeated that begins

on v. Suppose ν has been returned to the stack and a cycle

that begins on ν is found a second time, it cannot be reported

since ν e OS. Suppose a cycle beginning on ν that has been

reported is now found and begins on u. Since ν was removed,

then u must have been removed from the stack and u e OS which

contradicts the assumption that the cycle is reported.

- 11 -

Theorem 1 The Algorithm finds every simple cycle.

Proof : Assume false. Then there exists a simple cycle c = (y »...,

v n >v 1) that has not been found and thus neither (v »... ,vn)

nor any rotation has occurred on the top of the stack. Since

each vertex is placed on the stack at least once, some yertex

of χ must have been the first of c placed on the stack, say Vj

Then for some extension of v. , ν, , will be found and since
k k+l

Vk+1 ^ V S then it can be replaced on the stack. This can he
repeated for each extension of v. to ν. . of c» until ν »

ι l+l * l+l
v^ but then by construction the top of the stack is the cycle

c and it will be reported.

Theorem 2 The Algorithm finds the set of simple cycles of a finite

directed graph.

Proof: From Lemma 1 the procedure halts. From Lemma 4 and Theorem 1

it finds the set of simple cycles.

- 12 -

5. EVALUATION

The evaluation of an algorithm is generally a non-trivial

problem and comparisons of algorithms even more so. Three important

attributes of an algorithm are simplicity of the algorithm, storage

requirements, and execution speed. The fact that these three attributes,

for example, generally interact and can require trade-offs, further

complicates matters. One would like a simple algorithm not only for

ease of understanding but because simplicity often implies other

desirable properties. As an example, when the algorithm is executed

by an interpreter, simplicity can improve execution speed. It is diffi-

cult to judge the complexity of representation but we feel that our

algorithms are simple and fast and certainly less complex than those

of Tiernan or Weinblatt.

We will not perform an exhaustive evaluation of the algorithms

but do indicate briefly their storage and speed properties.

5.1 Storage

The storage requirement often depends upon the implementation

of the algorithm so we will evaluate the storage for the APL version.

We assume that all words are stored in fixed length cells of unit length.

First a push down stack VS is required which can grow to length n. Two

vectors TRY and PS of length η are required. So the storage is 3n + c

where c is a constant. In a Fortran version an additional vector was

used to increase execution speed. Storage then is bounded by 0(n).

This is considerably better than Weinblatt. Although it is

somewhat better than that indicated by Tiernan's description of his

algorithm of η 2 + η + c, the author has programmed Tiernan's algorithm

- 13 -

using 2n + c storage and so our algorithm is comparable to Tiernan

in this respect. The small difference is due to a speed versus

storage trade off.

5.2 Speed

A usual method of evaluating the speed of a graph algorithm

is to relate processing time to the number of vertices n. Since an

algorithm determines some property of the graph,we may consider the

speed in relation to the amount of property that a particular graph

has. In particular, for this algorithm the complexity of the graph

is determined by the number of cycles and the length of these cycles;

η is not a good estimate of this.

Ideally we should generate graphs whose cycles increase in

quantity and average length and plot the processing time. One may

also determine a theoretical estimate mathematically. For practical

reasons we have not done this in general. Another possibility is to

consider the worst case and this is to consider for each η the complete

digraph.

Certainly the complete graph has the most cycles and for

increasing η the average cycle length increases. However, examination

of the number of cycles of a complete digraph indicates that for practi-

cal purposes it is unlikely that high density digraphs will be frequently

encountered. A more useful evaluation of the algorithm would result

from a consideration of low density digraphs. Alas, it is difficult

to randomly generate such digraphs with desirable properties. Also,

since loops are simple to find, it is preferable to consider digraphs

without loops.

- 14 -

Due to the symmetry of the complete digraph its cycles can

be calculated directly. In order to count the cycles we note that each

permutation of every arbitrary subset of vertices represents a cycle.

These permutations do not all represent distinct cycles,for every rota-

tion of a permutation gives the same cycle.
n' There are then —77—\ .. distinct cycles of length m and m((n-ra)!) J 6

thus the total number of cycles of K n (omitting loops) is
n 1 Ν = η! γ-.—¿vT-r-

c m=2 m((n-m)!)

and the average cycle length is

?
m=2 ((n-m)!)

Cn = " '

\ _ 1

m=2 m((n-m) !)

From the formula for N^, it is not easy to comprehend the

size of the number involved, so in Appendix I we have derived some

simple bounds.
2((n-1)!) <N < ~ n! n=3,4...

c o

The complete digraph then gives an upper bound on the execu-

tion speed of any digraph of η vertices or any digraph of m arcs. For

the execution time on a digraph must be less than that on the minimal

complete graph that contains its number of arcs.

The problem with this bound is that, for low density digraphs

with a good distribution of the arcs, the bound is unrealistically high

as may be seen in Figure 4. Nonetheless, we indicate results on com-

plete digraphs in Figure 4 for a Fortran version of DCYCLE run on an

IBM 370 model 158 computer. It should be noted that these times include

the reporting of the arcs of the cycles found. This is done by transferring

the cycle from the stack to a dummy vector.

- 15 -

Nv nE Nc C £

1 0 0 0

2 1 1 2

3 6 5 2.4

4 12 20 3

5 20 84 3.8

6 30 409 4.76

7 42 2,365 5.78

8 56 16,064 6.82

9 72 125,664 7.84

10 90 1,112,073 8.87

Fig. 3

- 16 -

N v t t/N
c

t/cycle-arc
sec msec/cycle msec

5 .011 .131 .034

6 .069 .169 .035

7 .49 .207 .036

8 4 . 0 3 .251 .037

9 3 6 . 8 4 .293 .037

Fig. 4 Execution time of DCYCLE on Κ : Fortran G Compiler
η

- 17 -

We can experimentally evaluate the efficiency of the algorithm

on the complete digraph by the following simple strategy. First, find

the execution time to discover the cycles (that is, do not report them);

second, find the execution time to discover and report the cycles.

Reporting a cycle consists of recording it in a vector. The difference

then is the time required to report the cycles and it is clearly an

unattainable lower bound on any algorithm.

For K^ and Kg the time to discover and report cycles is

approximately three times that required just to discover cycles. One

would suspect that any algorithm must require twice the time required

merely to report a cycle in order to find and report, since reporting

is so simple an operation. As the algorithm appears to require about

three times this reporting time, it would appear that for digraphs

similar to the complete digraph the algorithm is extremely efficient.

Define the search between the discovery of cycles as a cycle

subsearch.

Theorem 3 The speed of DCYCLE on a complete digraph K n is of order

0 (N · m).
c

Proof : Let D be a complete digraph. The algorithm can retreat on at

most η vertices before advancing or halting. Since D is complete,

there exists a path from every vertex to KEY, that does not

intersect VS, therefore, once the algorithm advances it must

find a new cycle before it retreats. Each cycle subsearch is

then bounded by 0(m) and there are N c cycles so that the speed

is of order 0(N • m) on Κ .

- 18 -

5.3 Improvements

There are a number of possibilities for improving this algo-

rithm; however, since the alterations are essentially extensions of

the algorithm that reduce the number of times certain arcs are recon-

sidered, simplicity deteriorates: as the potential saving requires

increased testing and in some cases additional storage, it is not yet

clear what degree of improvement if any results. Most certainly per-

formance will be degraded on the complete digraph, but then this is

a trivial case, as we can calculate the results.

First of all there is no need to re-enter a strong component

once it has been examined; thus, this could be forbidden by the algorithm.

In certain cases this could be expensive in time and, of course, a com-

plete disadvantage for a strongly connected digraph, especially the

complete digraph. This can be done by identifying the cutvertices of

the strong components and then marking as forbidden those non-cutvertices

that belong to a strong component, that has been removed from the stack.

If one considers that it is parallel paths that lead to much

of the reconsideration of certain arcs,one could consider techniques

similar to Weinblatt1s algorithm and retain certain cycles so that the

information may be extracted from previous cycles.

It would be expected that the speeds of such modified algorithms

may be strongly dependent on the properties of the graphs being examined.

So we would like first to have some knowledge of the general properties

of graphs to which the algorithm is most likely to be applied.

- 19 -

Although the complete digraph is the worst case for the number

of cycles, it is actually not so when we consider the efficiency of

finding the cycles in the digraph, since every extension following a

retreat will lead to at least one new cycle. If every arc advance is

in a cycle, then the algorithm is very efficient.

Consider a maximum acyclic digraph A. Since A is acyclic,

then the vertices can be linearly ordered so that there are no feedback

paths. Now since A has a maximal number of arcs, then there must exist

arcs from each vertex to every higher ordered vertex. Thus every ordered

subset of this ordered set of vertices is a simple path. Now for a given

simple path, v^ is in or is not in the path; thus the number of simple

paths is 2n.

Our algorithm as stated would examine each such simple path

containing KEY and so 2 n ^ paths would be examined. This would indicate

that the algorithm as stated is not polynomial, with respect to the

number of cycles, in the worst case. However, if we label the vertices

which we know cannot lie in a new cycle, then the algorithm would add

a vertex of A to the stack at most once. Since each vertex is added

to the stack at most once, consequently each edge is examined at most

once; the search of A in this case, an acyclic digraph, would be 0(m)

and the search a linear function of the input.

It appears that the most efficient implementation of this

result is to first apply an algorithm to identify the strong components

of the digraph and then to apply DCYCLE to each strong component found.

However, this is another problem: so in the next section we show how this

result may be partially incorporated into our algorithm.

- 20 -

6. AN ADAPTIVE ALGORITHM

The example of the maximum acyclic digraph A in Section 5

showed that DCYCLE does not have a polynomial speed bound. We present

here an algorithm with such a bound. We can modify DCYCLE by a simple

strategy so that it becomes an adaptive algorithm: once an arc is exam-

ined it becomes forbidden until such time as it may occur in a new

cycle by labeling it with a 1; this can only occur after a cycle is

reported. The labels are cleared by setting them to 0. The increased

overhead is in many cases justified by reduced search.

Theorem 4 ACD reports every simple cycle.

Proof : Suppose that ACD does not report a cycle a. Some vertex χ

of a must have been the first to be placed on the stack. If

any vertex y of α is placed on the stack, there exists a path

from y to χ and thus a cycle will be reported before y is removed

from the stack. This cycle has its LABELs cleared, therefore,

when y is removed all vertices placed on the stack after y will

have their LABELs cleared. Because of this, no vertex of α

not on the stack can be forbidden until χ has been removed.

Therefore, by Theorem Ι,α must be reported. _
Φ

Theorem 5 ACD is an algorithm that reports the set of simple cycles

of a finite digraph.

Proof : Lemma 1 still applies so the algorithm halts. By Theorem 4

every cycle is reported and by Lemma 4 at most once.
Φ

- 21 -

ALGORITHM: ACD

Comment : Let D = <V,A>. Let VS be a pushdown stack; V,A,A' sets;

and TRY and LABEL functions on V.

1: Initialize

VS 0; Ar •«• 0

TRY(x) -«- 0, LABEL(x) +• 0, for all xeV

KEY ν, for some veV

2: Stack

VS ν, VS

LABEL (v) 1

3 : Advance

3.1 Find arc <v,w>€ A such that LABEL(w) = 0, set

A «- A - {<v,w>}

A'-*- A' u {<v,w>}

If there does not exist such an arc, go to Step 5:Retreat.

3.2 If w ¿ VS, ν w and go to Step 2:Stack.

3.3 If w e VS and TRY(w) = 0 go to Step 4:Report Cycle.

3.4 Do not report cycle; go to 3.1.

- 22 -

Report Cycle

4.1 CYCLE + Copy head of VS down to w and set LABEL to 0 for each

vertex.

4.2 Output CYCLE.

4.3 Go to Step 3:Advance.

Retreat

5.1 Delete ν from top of VS and set TRY (ν) 1.

5.2 If LABEL (v) =0, then clear all LABELs to 0, that were set

to 1 after ν was placed on VS.

5.3 Replace arcs that originate on v;

A A u{<v,x>}

A1«- A1-{<v,x>},for all such x.

5.4 If VS Φ 0, then set ν to the top of VS and go to Step 3:Advance.

Obtain Next KEY

6.1 Select vertex veV such that TRY(v) = 0, if there is none, Stop.

6 .2 KEY +- ν

6.3 Go to Step 2:Stack.

- 23 -

Theorem 6 The speed of ACD is bounded by 0(ο·πι·η), if D is not

acyclic.

Proof : No arc is searched more than once unless a vertex ν with LABEL(v)=0

is removed from the stack VS. After a cycle is reported, there

are at most η such vertices in VS and this number cannot be

increased unless a cycle is reported. Thus each vertex can be

cleared at most η times in a cycle subsearch and consequently

an arc is searched at most η times between reported cycles.

The bound per cycle then is 0(m*n). Therefore, ACD is bounded

by OCc^m'n).

Φ

Both algorithms will perform better if applied to strong

components only. This suggests that any implementation should first

preprocess the digraph to obtain the strong components.

Experimentation on random digraphs of up to 30 vertices indicates

that neither algorithm is superior. Both experimentation and analysis

indicate that any speed gain in the restriction to strong components

should favour DCYCLE. However, because of Theorem 6 it is preferable

to use ACD since one is protected against pathological cases and the

cost is not high. No such pathological case was observed. This is

probably due to the fact that in a strong component a certain complexity

is required for a pathological case, but then the condition of Theorem 3

applies and DCYCLE becomes more efficient. The cycles of K^ were found

by ACD in 42 seconds or compared to 36 seconds by DCYCLE.

- 24 -

7. CONCLUSION

An efficient search algorithm for finding the set of simple

cycles of a digraph has been presented, and its relation to the algo-

rithms of Tiernan & Weinblatt noted. Our algorithm contradicts Tiernan's

claim to be the theoretically most efficient search algorithm. Certainly

any optimal algorithm for this problem must only accept a cycle once,

but it is also important to minimize the search of the arcs and repeated

examination of cycles.

The problem of an optimal algorithm is difficult not only

to prove that you have one, but more so to decide just what is meant by

optimal. Since Weinblatt searches the arcs exactly once, we might say

that Weinblatt at least performs the optimal search of the digraph.

However, since he must search his list of cycles and paths, it is mere

semantics to say that he examines each arc but once. It is not difficult

to see that we also can reduce the search in our algorithm by maintaining

lists and this, perhaps, may improve the present algorithm, although we

have not yet fully investigated the implications; it is, however, certain

that the result will be more complex. Obtaining an algorithm that is

optimal over all digraphs appears to be a difficult problem, and it is

probable that one does not exist unless preprocessing is assumed. It is,

perhaps, more fruitful to define optimality with respect to strong com-

ponents.

The algorithm is practical in that the storage requirement is

modest and the time per cycle found is reasonable, and indeed so is

Tiernan's, contrary to his pessimistic conclusion for large digraphs

(except for pathological instances such as our example of a maximal

- 25 -

acyclic digraph). In part, the practicality of these algorithms lies

in the practicality of the problem; that is, one cannot find, say,

20,000 cycles in a digraph without incurring reasonable computing time

in respect to the magnitude of the problem.

As a point of interest this algorithm was developed as a

result of reading Weinblatt's paper.

REFERENCES

1. Busacker, R. G., and Saaty, T. L. Finite Graphs and Networks.
McGraw-Hill, New York, 1965.

2. Gibbs, N. E. A Cycle Generation Algorithm for Finite
Undirected Linear Graphs, JACM, 16, 4 (Oct. 1969), 564-568.

3. Gotlieb, C. C., and Cornell, D. G. Algorithms for Finding a
Fundamental Set of Cycles for an Undirected Linear Graph.
Comm. ACM 10, 12 (Dec. 1967), 780-783.

4. Paton, Keith. An Algorithm· for Finding a Fundamental Set of
Cycles of a Graph. Comm. ACM 12, 9 (Sept. 1969), 514-518.

5. Roberts, S. Μ., and Flores, Benito. Systematic Generation
of Hamiltonian Circuits. Comm. ACM 9, 9 (Sept. 1966),
690-694.

6. Salwicki, A. On the Application of Graph Theory to Determine
the Number of Multisection Loops in a Program. Algorytmy 2;
3 (1964), 73-81 (Englished.).

7. Schurmann, A. The Application of Graphs to the Analysis of
Distribution of Loops in a Program. Inform. Contr. 1 (1964) ,
275-282.

8. Tiernan, S. C. An Efficient Search Algorithm to Find the
Elementary Circuits of a Graph. Comm. ACM 13, 12 (Dec. 1970),
722-727.

9. Weinblatt, H. A New Search Algorithm for Finding the Simple
Cycles of a Finite Directed Graph, JACM, 19, 1, (Jan. 1972),
43-56.

10. Welch, J. T. A Mechanical Analysis of the Cyclic Structure
of Undirected Linear Graphs. JACM 13, 2 (Apr. 1966), 205-210.

APPENDIX I

Simple Bounds on the Number of Cycles in the Complete Digraph

n 1 Ν = η ! Σ 1

m _2 m((n-m)!)

First we derive a least upper bound on

S - Σ
n m=2 (n ~ m) !)

Consider the difference S -S
η n+1

F i r S t Sn+1 h a s a n additional term

χ' = i
1 2((n+1-2)!)

Consider the m t h term Τ of S and the m+1 term Τ ' of S
m n m+1 n+1

τ = 1
m m((n-m)!)

m+1 (m+l)((n+l-(m+l>) !) (m+l)((n-m) !)

N 0 W m ((n-m) !) > (m+l)((n-m) !)" a n d

Τ > Τ ,-m m+1

Since
2

Τ + τ = + - 2n~l _ 2n +n~l
n-1 n n-1 n n(n-l) n(n+l)(n-l)

Τ' + Τ' = — + ^ = 2n+l _ 2n^-n-l
n n+1 n n+1 n(n+l) n(n+l)(n-l)

A-l

Then
(Τ 1+T) — (Τ +Τ , ,) =
η-1 η η η+1

2 £ Τ 2 Ί - Α 1 η -1

Now 2 ^
η 2-1

Because

4 > 1 for η = 3 , 4,
η+1 *" (η-2)!

and thus S n + 1 < S n so that S3 is a least upper bound and S 2 = l/2

and S^ = 5 / 6 implies,

Ν < 7 ill n > 2 c 6

To derive a simple lower bound on Ν note that the last two terms are the
largest. c

j t ^ j + ΐΓ = n((n-2)!) + (n-1)!

Since η((n-2)!) = ((n-l)+l)((n-2)!) = (n-1)! + (n-2)!

T ^ l) + ΪΓ = 2 ((n " D !) + (n-2)! > 2 ((n-1) !)

and 2((n-l)!)'<N n=3,4,...

n 1 5 Thus 2 ((n-1) !) < η! Σ r-p- s f η! , η > 2 ,
m _ 2 m((n-m)!) 6 '

A-2

