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ABSTRACT 

According to the 5th Annual Report of the Intergovernmental Panel on Climate Change 

(IPCC), climate change will increase the frequency of large weather events such as 

floods, storm surges, cyclones, hurricanes, high speed winds, thunderstorms, 

snowstorms, blizzards, extreme temperatures and others. All these events lead to a 

significant economic damage to property, infrastructure and human health. 

Historically Atlantic Canada has been vulnerable to flooding. Destructive 

consequences of the flooding have been seen in the past and are expected to occur in 

the future specifically as a result of ongoing climate change. The ultimate goal of this 

study is to establish a relationship between socio-economic, climate change as well as 

direct flood factors and economic loss from floods in Atlantic Canada. As the first step 

in reaching this goal, the present study evaluates probability of floods in Atlantic 

Canada due to hydrological as well as climatological factors first and then tests the 

hypothesis of an increasing frequency of floods in the future due to climate change. 

Comprehensive statistical analysis performed in this study is based on the data 

collected from Canadian Disaster Database, Database of Environmental Departments 

and Local Governments of Maritime Provinces of Canada and Statistics Canada. 
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Chapter 1. Introduction 

According to the 5th Annual Report of the Intergovernmental Panel on Climate Change 

(IPCC), as the world has warmed, that warming has triggered many other changes to 

the Earth’s climate. Changes in extreme weather and climate events such as floods, 

storm surges, cyclones, hurricanes, high speed winds, thunderstorms, snowstorms, 

blizzards, extreme temperatures and others are the primary way that most people 

experience climate change. Human-induced climate change has already increased the 

number and strength of some of these extreme events. Over the last 50 years, we have 

seen increases in prolonged periods of excessively high temperatures, heavy rainfalls 

and snowstorms, and in some regions, severe floods and droughts.  

Historically Atlantic Canada has been vulnerable to flooding. Destructive 

consequences of the flooding have been seen in the past and are expected to occur in 

the future especially as a result of ongoing climate change. The Canadian Disaster 

Database recorded more than 100 meteorological and hydrological disasters occurred 

in Maritime Provinces during period of 1900-2014. Floods appear to be the most 

frequent among all extreme weather events as presented in the following table.  

Table 1:  Extreme weather events in Canada’s Maritime Provinces 

Type of 

event 

Quantity of events in different years 

1990-2014 1965-1989 1940-1964 1900-1939 

total  annual total  annual total  annual  total  annual 

Flood 22 0.88 17 0.68 9 0.36 10 0.25 

Winter 

storm 

15 0.6 2 0.08 2 0.08 1 0.025 

Hurricane, 

tropical 

storm 

11 0.44 5 0.20 6 0.24 3 0.075 
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Severe 

thundersto

rm 

8 0.32 7 0.28 1 0.04 2 0.05 

Storm 

surge 

4 0.16 3 0.12 0 0 0 0 

TOTAL 60 2.4 34 1.36 18 0.72 16 0.4 

Source: Data Adapted from Burina 2017 

The author of the table given above – Burina (2017) – identifies extreme weather as 

an event meets at least one of the following criteria (based on definition from Canadian 

Disaster Database): ten or more people killed; one hundred or more people 

affected/injured/evacuated or homeless; an appeal for national/international 

assistance; event of historical significance; significant damage/disruption such that 

community could not recover without assistance. More importantly, as seen from the 

above table, frequency of floods has been increasing over reported period.  

Huber and Gulledge (2011) note that in general climate change means not only average 

changes in the so-called climate related variable such as, for example, annual 

temperature or precipitations but also shifts in the frequency and severity of extreme 

weather events. Moreover, they claim that these shifts produce the highest economic 

and social damage among all climate change impacts. With respect to floods, the above 

mentioned authors claim that “… recent examples of flooding and extreme rainfall 

should provide lessons on where flood control and emergency systems are most 

needed and how much the investments in preparation are worth. Additionally, extreme 

events represent data points that can improve trends and estimates of future risk…” 

Thus, the goal of our study is multi-dimensional. First, we test a hypothesis about 

climate change and potential breakpoint in flood attributes in Atlantic Canada. Then 

we investigate how climate change influences on probability and frequency of 
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flooding in the given region. Finally, we would like to consider the reliability of our 

outcome. 

The rest of the study is organized as follows. The next chapter provides a brief 

overview of literature review on the given topic.  Methodology description and general 

modelling approach is described in chapter 3. Then we describe our data and empirical 

framework along with key findings for econometric evaluation of flooding events in 

chapter 4. Chapter 5 concludes and provides insights in the potential future researches 

in the given area. 
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Chapter 2. Literature review 

Based on research of the field, I could highlight two main conceptual streams in the 

literature with respect to given field. First one is based upon consideration of the flood 

from hydrological point of view. That’s why I would like to classify this stream as 

“hydrological”. Why it is important for our study? The main idea is to define variables 

that affect probability of floods. They might be divided in several groups: hydro-

climatic, economic, physical, etc. Our idea is to define relevant variables in our case 

study. There are many specific variables might be used to build a model for flood 

forecasting, such as soil moisture capacity, rainfall intensity and rainfall depths for 

different periods of time etc. The most prominent model that is used to operate within 

given framework is called “rainfall-runoff model” or simply runoff model. It is a 

mathematical non-linear model that describes relations between drainage basin, 

catchment area and watershed. To be more precise, it produces runoff hydrograph as 

an output in response to inputs created by rainfall event. Let’s take a look at this model 

in some specific literature scope. 

Hlavcova et al. (2005) consider conceptual rainfall-runoff model with real-time 

estimates of the soil moisture conditions in a catchment. They state that such models 

usually are run by forecasting agencies and, as a result, data, methodology and results 

are publicly available. Their method is scenario-based. It captures all necessary results 

from an analysis of the return periods. Their rainfall-runoff model is non-linear and 

produces great results with respect to flood forecasting. These results were proven to 

be concise in Hron River Basin case study. 

Vaze et al. (2012) suggest that complex methods that are being used for the rainfall-

runoff model tend to be data-demanding while more simpler methods might generate 

heavy bias in the output. They also state there is exist need in “development more 
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sophisticated approaches for parameter sets derived from multiple gauged 

catchments” and development of more progressive methods for rainfall-runoff models 

in the region scale. 

Zhijia et al. (2008) perform rainfall-runoff simulation and then they make flood 

forecasting for Huaihe Basin. Their model was created to forecast the discharge 

hydrographs and channel routing with rainfall-runoff model itself. They made a real-

time correction and considered possible influences of major flood gates as well as 

main reservoirs. After model calibration, it was applied to the flood of 2005 (while 

model was created based on the data from 2001 to 2004). The forecast of the model is 

proved to be accurate and consistent with observed results. Besides the reliable results, 

authors claim that “rainfall-runoff and flood forecasting based on hydrological models 

is complicated”. Hence, they made a few simplifications and did not include operation 

of flood diversion and retarding areas as well as some of the gates in the river 

networks. Inclusion of such data might have an integrated effect on the result while it 

makes given model even more complex and tangled. 

There are a lot of other studies that consider runoff model: Calver and Lamb (1999), 

Cameron et al. (2000), Vaze et al. (2011a), Madsen (2000), etc. Most of them highlight 

high precision of the results and specify that such sort of modelling is resource 

demanding. 

Hence, I would like to conclude that forecasting of floods from hydrological point of 

view in general and rainfall-runoff model in particular has an advantage in terms of 

great precision and reliability of the outcome. In this model floods are considered in 

their nutshell and results are based upon deliberate examination of the relevant 

variable and their interaction. Despite these huge pros, operation of this model requires 
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deep understanding of the process itself and variables that might be relevant to a flood 

in each geographical area. This argument and complexity of the model create some 

significant barriers for researchers who do not have substantial hydrological 

knowledge. The main idea we took from this stream is a relevant set of potential 

factors that might relate to flooding, such as level of precipitations or river discharge. 

My area of expertise lies outside hydrology. In this work, I am looking for much more 

transparent model that might be performed and understood by people without 

hydrological background. To create the model that satisfies given requirements, I have 

considered another big chunk of literature. A lot of authors use only commonly known 

variables for flood estimation (annual rain or snow precipitation, water discharge etc.) 

but experiment with different functional forms and/or statistical approaches. Various 

types of data, such as cross-sectional, time-series, or panel data could be used. 

Straightforward frameworks in this case are usually based on linear models, while 

more complex ones advocate for non-linearity in specifications. Probabilistic 

outcomes are estimated with wide range of models, such as logit, probit, generalized 

extreme value functions, etc. There is also a diversity in parametric and non-

parametric modelling. As a result, I would like to classify this stream of literature as 

“statistical”. Here we are looking for the best possible specification and estimation 

algorithm for our case study. 

Hasanah, Herlina, and Zaikarina (2013) consider a transfer function model of water 

discharge and rainfall in Katulampa dam (Indonesia) to make a flood prediction 

system. Their model connects the output series, the input series, and white noise 

together. Despite the fact the model is comprehensive and requires a plenty of 

preparatory identifications and estimations, it provides significant results and shows 

that there is exists a link between floods, water discharge, and rainfall. In the end, 
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authors of the article claim it would be more accurate if the more variables were 

included in the model. This question would be addressed in our work later. 

Aich, Kone, Hattermann, and Paton (2016) perform time-series analysis of floods 

across Niger River Basin using hydro-climatic variables, such as precipitation level 

and annual maximum discharge (AMAX). Since Niger River has a huge basin, data 

was split across subregions for a higher precision of estimation. Non-stationary 

generalized extreme value functions and some non-linear methods were used to 

analyze data itself, change in the variance of annual flood peaks and damage caused 

by the flood. Their results show a strong relationship between floods, precipitation, 

and AMAX. Authors have also found strong relationship between increasing trend in 

AMAX and increasing flood magnitudes which indirectly increase flood risk. 

Mohr, Kunz and Keuler (2015) develop and apply special logistic model to estimate 

the past and future hail potential in Germany. Despite the fact, hail attributes are 

different from flood determinants, the model itself is interesting for our purposes. The 

probabilistic outcome of the estimation of the model has a certain threshold to 

determine occurrence or absence of the given event in the considered year. They assert 

“The logistic model approach based on logistic regression improves the diagnostic of 

hail events…”. However, like any model, their model has its own weaknesses, one of 

them is nature and availability of some data. 

Mouri et all. (2013) describe a model for probability of assessment of floods in Japan. 

They introduce special flood risk index as a proxy for probability of floods in a given 

geographical area. To predict index value authors put into use the most essential 

climatic variables with respect to floods: precipitation and river discharge. To find the 

calculation of the return period for a given variables the data were assumed to follow 
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Gumbel distribution. They highlight that expected value of flood damage and 

economic losses might be estimated with higher precision using their index. 

The literature on this topic is wide and more valuable ideas could be found in: 

Kundzewicz et al. (2013), Paeth et al. (2010), Casse et al. (2015), Sarr et al. (2013), 

etc. Their views are broad in nature. Overall, they have supplied us with a realm of 

ideas related to our case study. 

So, based on the information from literature above, I would like to summarize that 

statistical stream of literature shows ways that allow people without hydrological 

background performing research in this field. This point and clear outcome of the 

framework for policy recommendation purposes are considered to be advantages of 

the statistical stream. In fact, smaller number of independent variables might lead to 

omitting some of them that might be relevant in a specific geographical area. This 

disadvantage might intensify level of biasness of the model furthermore. 

As we can see from literature discussed the most common type of data used is time-

series. Significant number of authors address non-linearity in their frameworks. 

Generalized linear models for binary dependent variables, such as logit are widely 

used in these cases. We would like to keep these points in mind during our modelling 

process. 

Main purpose of this work is to create pellucid framework which does not require big 

number of people to operate or some very specific knowledge with respect to a given 

sphere. The model also should not be extensively comprehensive and results of it 

should be intelligible for people from various fields. In the end, this work is intended 

to become a part of a bigger general equilibrium (GE) framework which requires 
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additional flexibility of outcome with respect to possible changes in independent 

variables set. 

Hence, I would like to follow statistical stream of literature during my model 

specification with some points of hydrological to set up and estimate the model for a 

flood forecasting in Atlantic Canada. 
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Chapter 3. Methodology 

The ultimate goal of this research is to show that climate change increases probability 

of floods in Atlantic Canada. Since the goal of this study is twofold, I divide it in two 

steps. In step one, we are going to find the best statistical model to explain probability 

of floods in Atlantic Canada as a function of socio-economic, climate and hydrological 

variables. In the end, we choose the most important variable. In step two, we analyze 

dynamics of the most significant climate variable to explain probability of flood - 

rainfall. Time-series analysis is used to testify for climate change and find evolutionary 

dynamics of the variable of choice from step one. In addition, we would like to test 

for endogenous break the rainfall variable. The two steps combined provide us with 

probability of future floods due to climate change as seen through changes in dynamics 

of rainfall. Burina (2017) statistically found the so-called damage function with 

respect to floods in Atlantic Canada. Coupled with future probabilities, the damage 

function can produce expected loss from floods. As already mentioned, all these 

outcomes of the study will give policy makes the upper bound for the investment in 

flood mitigation measures.  

In the step one I consider 3 models that are used for data in binomial form: probit, 

logit, and complementary log-log transformation. I would like to use description for 

probit and logit models from the book “Econometric theory and methods” Russell 

Davidson and James G. MacKinnon (2004). 

Consider framework of the binary response model in the following form: 

𝑦𝑡 =  𝑋𝑡𝛽 + 𝜇𝑡   (1) 

In a model with binomial response, the value of the dependent variable yt can take on 

only two possible values: zero or one. Denote Pt as the probability that yt = 
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1conditional on some information set Ωt. Then binary response model serves to model 

this conditional probability. Since for the dependent variable there are only two 

possible options: 0 and 1, it is clear that Pt is also expected value of yt conditional on 

information set Ωt: 

Pt ≡Pr (yt=1 | Ωt) = E (yt | Ωt) = Xtβ 

Obviously, any potential binary response model must satisfy that 0 ≤ E (yt | Ωt) ≤ 1. 

Even if this condition is held for all observations in a given sample, it is possible to 

find values of Xt for which our estimated probability value Xt𝛽̂ would contain numbers 

outside the 0-1 probabilistic interval. Theoretically, there are many possible ways how 

to ensure that given probability would be in the necessary 0-1 interval. In practice, 

there are not so much models are widely used. All of them ensure condition 0 ≤ Pt ≤ 1 

by specifying that: 

Pt ≡ E (yt | Ωt) = F (Xtβ) 

where Xtβ – index function, which maps vector of independent variables and vector of 

parameters into some scalar index, and F(x) – is a transformation function, which 

should satisfy the following properties: 

1) F (-∞) = 0; 

2) F (+∞) = 1; 

3) 𝑓 (𝑥)  =  
𝑑𝐹(𝑥)

𝑑𝑥
 > 0. 

The first possible option is the cumulative standard normal distribution function: 

𝛷 (𝑥)  ≡  
1

√2𝜋
∫ 𝑒−

1
2

𝑋2
𝑥

−∞

𝑑𝑋 

When transformation function F (Xtβ) = Φ (Xtβ), the model is called the probit model. 
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The logit model is quite similar to probit, but the transformation function is called 

logistic function and it has the following form: 

𝛬 (𝑥)  ≡  
1

1 + 𝑒−𝑥
=  

𝑒𝑥

1 +  𝑒𝑥
 

Oosterbaan (1994) in their “Chapter 6: Frequency and regression analysis of 

hydrologic data” in Ritzema H. P. “Drainage Principle and Applications, Publication 

16” describes the standard Gumbel distribution as 

Θ (x) ≡ 𝑒−𝑒−𝑥
 

This distribution also known as Generalized Extreme Value distribution Type - I and 

could also be considered as transformation function. 

In fact, binary response models mentioned above are special cases of broader class of 

the so-called Generalized Linear Models (GLM). To be consistent with classification 

of the broader class, modern literature and software introduce concept of link function 

and apply it to the left-hand side of equation (1) instead of applying some 

transformations to the right-hand side. To explain theory behind it, I would like to 

follow German Rodriguez’s (2017) lecture notes on GLM from Princeton University. 

He states, “In fact, any transformations that maps probabilities into the real line could 

be used to produce a generalized linear model, as long as transformation is one-to-one, 

continuous and differentiable”. So, let’s consider F(.) – cumulative distribution 

function (c.d.f.) of some stochastic variable defined overall real line: 

𝜋 𝑖 =  𝐹 (𝜂𝑖) 

where our random variable -∞ < ηi < + ∞. Then inverse transformation  

𝜂𝑖  =  𝐹−1 (𝜋𝑖) 
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for πi within probabilistic interval 0-1 is called link function. 

This concept became popular by introducing models for binary data connected with 

latent variables. Denote our dummy variable as Yi. Assume that there is exist another 

unobservable stochastic and continuous variable Zi which is defined on the entire real 

line. Consider our variable Yi as an indicator which is equal to one if Zi exceeds some 

given threshold θ. In such a case Zi is called latent variable. Hence, 

𝜋𝑖 = Pr{𝑌𝑖 = 1} = Pr {𝑍𝑖 >  𝜃} 

We don’t observe this variable, thus properties of latent variable Zi are set by 

researcher. Popular practice in model identification of latent variable is to set threshold 

equal to zero and standardize Zi to have standard deviation equal to some fixed number 

(for example, one).  

Assume that outcome depends on a vector of covariates x. Let’s write this dependence 

in the following way: 

𝑍𝑖 =  𝑥𝑖
′𝛽 +  𝜇𝑖 

where β is a vector of coefficients and µi is an error term that have some distribution 

with c.d.f.  F(µ). According to this model: 

𝜋𝑖 = Pr{𝑍𝑖 > 0} = 𝑃𝑟{𝜇𝑖 >  −𝜂𝑖} = 1 − 𝐹(−𝜂𝑖) 

where 𝜂𝑖 = 𝑥𝑖
′𝛽 is the linear predictor. If the distribution is symmetric around zero, 

then  𝐹(µ)  =  1 −  𝐹(−µ). From here:  

𝜋 𝑖 =  𝐹 (𝜂𝑖) 

This equation defines a GLM with binary response and the following link function: 

𝜂𝑖  =  𝐹−1 (𝜋𝑖) 
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If the distribution of the error term is not symmetric around zero: 

𝜂𝑖  =  −𝐹−1 (1 −  𝜋𝑖) 

There are 3 popular link function that are widely used in the literature and practice. 

Two of the them are based on the symmetric c.d.f. (logit and probit), while the third 

one is not (complementary log-log transformation). They have the following 

properties: 

1) Probit: 𝜋𝑖 =  𝛷 (𝜂𝑖);  𝜂𝑖  =  𝛷−1 (𝜋𝑖); 

2) Logit: 𝜋 𝑖 =  𝐹 (𝜂𝑖) =  
𝑒𝜂𝑖

1+ 𝑒𝜂𝑖
;   𝜂𝑖  =  𝐹−1 (𝜋𝑖) = 𝑙𝑜𝑔

𝜋𝑖

1− 𝜋𝑖
; 

3) Complementary log-log transformation: 𝜋 𝑖 =  𝑒−𝑒−𝜂𝑖 ;   𝜂𝑖  = log (−log (1 −

𝜋 𝑖)). 

The author highlights, “The complementary log-log transformation has a direct 

interpretation in terms of hazard ratios, and thus has practical implications in terms of 

hazard models…”. Also, Oosterbaan (1994) in their “Chapter 6: Frequency and 

regression analysis of hydrologic data” in Ritzema H. P. “Drainage Principle and 

Applications, Publication 16” claims, “they [hydrologists] frequently use the Gumbel 

distribution to find annual or monthly maxima of floods or to find rainfalls of short 

duration”. The author also presents an example of finding a maximum of some 

hydrological process using Gumbel distribution paper. In fact, this paper has 

complementary log-log transformation of the considered function as a scale which 

yields a necessary linear relationship with a variable that denotes a wanted maximum. 

As we discussed at the beginning of this chapter, in step two the advanced time-series 

techniques are used with respect our variable of choice from step one – rainfall 

precipitation. Enders (2014) in his book “Applied econometric time series” points out 
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that time-series could be decomposed into four main components: trend, seasonal, 

cyclical, and irregular (or stochastic) component. The first two of them are associated 

with long-run dynamics of the series. The author of the book highlights that 

autoregressive process of order one or AR (1) with linear time trend and seasonal 

component is the simplest and the most reliable way to capture the major part of the 

long-run mean for a given data and/or model. Rainfall precipitation data in our case is 

in annual format and not a subject to the seasonal component. Thus, our variable of 

choice is decomposed via AR (1) process with linear time trend. The rain variable and 

its residuals from the estimation mentioned above are tested for the breakpoint. To do 

so, Zivot-Andrews test is used as one of the widely used tests in the literature.  

Finally, the two steps are combined to make a reliable forecast of the flooding events 

in Atlantic Canada through changes in the time path of the rainfall precipitation. 
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Chapter 4. Estimations and results 

4.1 Model specification and probability of floods in Atlantic Canada 

The flood forecasting system should be transparent and reliable. As previously 

discussed, I am looking for a straightforward model that does not require a board of 

specialists in various fields and thus, it could be operated with minimum human capital 

costs. 

Most of the literature suggests using time-series analysis for extreme weather events 

estimation. I am going to follow this trend as it is proved to be trustworthy and 

intelligible theory for my purposes.  

There is no common opinion among researchers with regards to floods determinants. 

As we indicated above, various literature proposes different variables such as: annual 

precipitation, annual snow, annual rain, deviation of average precipitations from their 

historical trends, number of series of consecutive days with heavy precipitation; 

annual average temperature, deviation of annual average temperature from its trend, 

deviation of the average temperature at the month of the event; annual discharge level 

mean, annual maximum discharge; mean sea level. As I am interested in performing 

analysis for the local scope, I was limited by data and unable to collect it for some of 

the variables above.  

The dependent variable in my model in step one is flood dummy takes on value of one 

when at least one flood occurred in a given year and zero otherwise. Based on the data 

from Canadian Disaster Database (CDD), we would mostly investigate the impact of 

inland floods. As we use data from CDD, definition of flood in our case coincides with 

Burina (2017) presented in the introduction. As independent variables I included 

annual rain, annual snow, annual average temperature, annual maximum discharge, 
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mean sea level and year of observation. In addition, one of the economic variables – 

income – was incorporated into specification to address possible relationship between 

floods and economic performance over time. I would like to check whether change in 

real disposable income per capita influences probability of floods. It might be the case 

that with more per capita income people become wealthier; thus, they build more 

infrastructure and become more exposed to floods in context of definition from CDD. 

I expect to observe positive relationship between floods and rain, snow, discharge and 

sea level variables as these variables might be considered as pre-determinants of flood. 

While I suppose to find a negative relationship between floods and temperature 

variable, because higher annual average temperature usually leads to drier climate 

patterns. All variables, their descriptions and sources are presented below. Information 

on location of gauges and descriptive statistics for the relevant variables is also 

presented. 

Variables description: 

year – year of observation; 

dummy_flood – binary variable (1 – flood, 0 – no flood); 

rain – annual amount of rain in mm; 

snow – annual amount of snow in cm; 

temperature – annual average mean temperature in 0C; 

discharge – annual maximum river discharge in m3/s; 

sea – mean sea level in mm; 

income – real disposable per capita income in dollars 2002; 
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log”varname” – natural logarithm of the corresponding variable. 

Table 2: Source of data 

Variable Source 

dummy_flood Canadian Disaster Database; 

NB Flood History Database 

rain Environment and Climate Change Canada 

snow Environment and Climate Change Canada 

temperature Environment and Climate Change Canada 

discharge Environment Canada 

sea Permanent Service for Mean Sea Level (PSMSL) 

income Statistics of Canada 

Table 3: Location of gauge 

Variable Location 

rain UNB, Fredericton 

snow UNB, Fredericton 

temperature UNB, Fredericton 

discharge Saint John River, Grand Falls 

sea Saint John 

Table 4: Descriptive statistics 

Variable Number of 

obs. 

Mean Min Max 

year 86 1972.5 1930 2015 

dummy_flood 86 0.372093 0 1 

rain  86 854.7837 474 1266.1 

snow 86 263.7279 75.7 468.8 

temperature 86 5.443023 3.8 7.4 

discharge 86 3328.081 915 7500 

sea 86 7004.733 6861 7209 

income 84 10867.59 2225.7 22338.7 

Therefore, all three models were estimated in Stata in levels and in logarithms. The 

latter was done to test for possible non-linearities in the model. The basic model was 

estimated in probit, logit and complementary log-log transformation framework. The 

main idea here is to choose the best specification among these three models and to 

proceed with it. The following tables 2 and 3 present our results. 
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Table 5: Estimation results in levels for all variables (standard errors in 

parentheses) 

Variable Probit Logit Comp. log-log 

Coef z-

value 

Coef z-

value 

Coef z-

value 

rain 0.0039005 

(0.0013269) 

2.94 0.0072818 

(0.0024786) 

2.94 0.0059157 

(0.0018527) 

3.19 

snow -0.0014373 

(0.0029) 

-0.48 -0.0022962 

(0.0052258) 

-0.44 -0.0012856 

(0.0034043) 

-0.38 

temperature -0.5455037 

(0.2905437) 

-1.88 -0.9085371 

(0.5039222) 

-1.80 -0.7141765 

(0.3918479) 

-1.82 

discharge 0.0005595 

(0.000164) 

3.41 0.0010066 

(0.0003074) 

3.27 0.0007534 

(0.0002106) 

3.58 

sea 0.0099308 

(0.0047127) 

2.11 0.0162102 

(0.0082674) 

1.96 0.0105088 

(0.0054879) 

1.91 

income -0.0000387 

(0.0000452) 

-0.86 -0.0000576 

(0.0000766) 

-0.75 -0.0000344 

(0.0000544) 

-0.63 

constant -71.5155 

(32.08383) 

-2.23 -117.8992 

(56.36849) 

-2.09 -77.761 

(37.51056) 

-2.07 

 AIC = 1.073097 

BIC = -265.0328 

Pseudo R2 = 0.3046 

AIC = 1.066484 

BIC = -265.5882 

Pseudo R2 = 0.3097 

AIC = 1.064656 

BIC = -265.7418 

 

Table 6: Estimation results in logs for all variables (standard errors in 

parentheses) 

Variable Probit Logit Comp. log-log 

Coef z-

value 

Coef z-

value 

Coef z-

value 

lograin 2.974064 

(1.078251) 

2.76 5.647637 

(2.0272) 

2.79 4.622046 

(1.55687) 

2.97 

logsnow 0.1215084 

(0.7289998) 

0.17 0.2589357 

(1.247278) 

0.21 0.2334223 

(0.8859702) 

0.26 

logtemperature -2.192946 

(1.51941) 

-1.44 -3.611766 

(2.60924) 

-1.38 -2.502822 

(1.957763) 

-1.28 

logdischarge 1.677533 

(0.5369672) 

3.12 3.157656 

(1.030367) 

3.06 2.553728 

(0.8015637) 

3.19 

logsea 64.23677 

(34.55837) 

1.86 105.5395 

(60.1431) 

1.75 69.902 

(41.23289) 

1.70 

logincome -0.3571976 

(0.440307) 

-0.81 -0.5518619 

(0.7441262) 

-0.74 -0.3933789 

(0.540855) 

-0.73 

constant -596.5655 

(302.1778) 

-1.97 -989.2509 

(527.3135) 

-1.88 -665.3338 

(361.304) 

-1.84 

 AIC = 1.113163 

BIC = -261.6672 

AIC = 1.100789 

BIC = -262.7066 

AIC = 1.092315 

BIC = -263.4184 
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Pseudo R2 = 0.2739 Pseudo R2 = 0.2834 

Stata does not report pseudo R2 (analogue of R2 for GLM) for complementary log-log 

transformation, but it has slightly better fit in comparison with logit and probit. But in 

general Stata manual suggests “Because this statistic [pseudo R2] does not mean what 

R2 means in OLS regression (the proportion of variance explained by the predictors), 

we suggest interpreting this statistic with great caution”. Hosmer and Lemershow, in 

their textbook “Applied Logistic Regression” explain that pseudo R2 is not useful to 

report alone but might be reasonable statistic to evaluate competing model. 

Nevertheless, smaller outcome of Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) show the model with better relative power. Based on this 

data set and estimations, we can state that our models have the following ranking:  

1) Complementary log-log transformation; 

2) Logit; 

3) Probit. 

But as we can see not all the variables are statistically significant. According to Stata 

manual, variable is statistically significant if |z-value| ≥ 1.96. Based on this definition, 

for example, snow and income are far from being significant. Based on our data, we 

did not find any statistical evidences for the relationship between proxy of economic 

performance – income – and probability of flood occurrence in Atlantic Canada.  

Results with only significant variables are presented below in tables 4 and 5. 

Table 7: Estimation results in levels for statistically significant variables 

(standard errors in parentheses) 

Variable Probit Logit Comp. log-log 

Coef z-

value 

Coef z-

value 

Coef z-

value 

rain 0.0040588 

(0.0013048) 

3.11 0.0074721 

(0.0024297) 

3.08 0.0059702 

(0.0018086) 

3.30 
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temperature -0.5518679 

(0.2508666) 

-2.20 -0.9361392 

(0.4460224) 

-2.10 -0.7155042 

(0.3144972) 

-2.28 

discharge 0.0005245 

(0.0001613) 

3.25 0.0009487 

(0.0003008) 

3.15 0.0007123 

(0.0002085) 

3.42 

sea 0.0069015 

(0.0027459) 

2.51 0.0116321 

(0.0047793) 

2.43 0.0077618 

(0.0034015) 

2.28 

constant -51.04924 

(18.98468) 

-2.69 -86.82574 

(33.27439) 

-2.61 -59.09007 

(23.82607) 

-2.48 

 AIC = 1.034039 

BIC = -281.8748 

Pseudo R2 = 0.3048 

AIC = 1.027229 

BIC = -282.4604 

Pseudo R2 = 0.3099 

AIC = 1.023099 

BIC = -282.8156 

 

Table 8: Estimation results in logs for statistically significant variables 

(standard errors in parentheses) 

Variable Probit Logit Comp. log-log 

Coef z-

value 

Coef z-

value 

Coef z-

value 

lograin 3.066071 

(1.058162) 

2.90 5.734965 

(1.983421) 

2.89 4.579901 

(1.507495) 

3.04 

logtemperature -2.688272 

(1.320021) 

-2.04 -4.550076 

(2.314561) 

-1.97 -3.267476 

(1.566408) 

-2.09 

logdischarge 1.615926 

(0.5281205) 

3.06 3.040746 

(1.003948) 

3.03 2.420088 

(0.772697) 

3.13 

logsea 46.28019 

(18.93879) 

2.44 78.19842 

(33.07324) 

2.36 50.97309 

(22.92133) 

2.22 

constant -439.4161 

(168.1415) 

-2.61 -748.7708 

(295.4921) 

-2.53 -497.3237 

(204.2823) 

-2.43 

 AIC = 1.069614 

BIC = -278.8153 

Pseudo R2 = 0.2778 

AIC = 1.058753 

BIC = -279.7494 

Pseudo R2 = 0.2861 

AIC = 1.05196 

BIC = -280.3335 

These estimations show that there are 4 statistically significant variables: rain, 

temperature, discharge, sea and corresponding variables in logarithms. Moreover, rain 

appears to be the most significant hydro-climatic variable in complementary log-log 

transformation model. Also, we can conclude that relative ranking of models has not 

change. 

I would like to point out that signs of the coefficients are seemed to follow our 

expectations. 
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Based on the estimation above, there is no substantial difference between levels and 

logarithms in terms of statistical significance of coefficients among all three models. 

Hence, I decided to continue further analysis in levels only. 

4.2 Dynamics of rainfall in Atlantic Canada 

According to the Fourth Assessment Report of Intergovernmental Panel on Climate 

Change (IPCC) temperature and precipitation changes are the most “obvious and 

easily measured changes in climate”. It is also clear from our estimations that their 

changes have a significant impact on floods frequency and severity. To build more 

precise and reliable model, rain variable would be “decomposed” further into its long-

run mean that characterizes frequency of rainfall and residuals that would be tested for 

some variance patterns that correspond to intensity or magnitude of the rainfalls. 

Variable rain was chosen for this estimation as it is one of the major determinants of 

climate change and floods based on the estimations from step one. Moreover, rainfall 

variable has a twofold nature – it is simultaneously hydrological and climatic variable. 

It also has detailed data not only on annual but monthly and daily basis. The latter 

might be useful for further investigations on this topic. 

As discussed in the methodology, the rainfall data is estimated using AR (1) model 

with linear time trend. The results are presented below. 

Table 9: Estimation results for rain: AR (1) with trend 

Variable Coefficient z-value 

AR-1 0.831885 0.76 

trend 0.187374 0.27 

constant 777.3404 7.92 

As we can see, both trend and AR part are not very statistically significant. That’s why 

the rain data was further tested for a structural break. In general, change in a dynamic 

process can be of different nature: (i) change in the process’s mean, (ii) change in the 
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process’s variance, (iii) change in both, the process’s mean and variance.  I have used 

Zivot-Andrews test for structural break which is allowing for break in both intercept 

and trend. In a few words, this test has its own breakpoint statistics that is being 

calculated for each observation and then the observation with the most negative value 

of statistics is reported to be the most feasible candidate for a breakpoint. Stata also 

supports a graph option to visualize the outcome. 

Figure 1: Zivot-Andrews test for the rain variable 

 

As we can see from the graph, Zivot-Andrews test states the most viable candidate for 

a breakpoint year is 1972. I have tried different ARMA structures with trend before 

and after this year, but none of them provides a set of statistically significant 

coefficients. As a result, I decided to stay with AR (1) structure with trend and focus 

on residuals from this regression to find some patterns in magnitude of the rain 

variable. The graph for residuals could be found below. 

Figure 2: Graph for residuals 
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Residuals are seemed to have complex variance structure with possible break in it. 

That’s why I would like to use ARGH/GARCH models. The main idea here is to find 

good fit for the whole sample and test for a structural break. The moderate overall fit 

for the residuals is shown with ARCH (1) GARCH-3 structure. 

Table 10: Estimation results for the residuals: ARCH (1) GARCH-3 

Variable Coefficient z-value 

ARCH-1 - 0.0905263 - 1.47 

GARCH-3 - 0.7378028 - 2.54 

constant 42058.92 4.58 

Residuals were also tested for structural break. 

Figure 3: Zivot-Andrews test for the residuals 
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Zivot-Andrews test reports the same year as a potential breakpoint – 1972. But in the 

case of residuals, statistical difference was found with respect to significance of the 

coefficients in the previous ARCH (1) GARCH-3 structure. 

Table 11: Estimation results for the residuals: ARCH (1) GARCH-3 before 

1972 

Variable Coefficient z-value 

ARCH-1 0.2239242 0.89 

GARCH-3 0.4906698 0.61 

constant 6495.686 0.37 

Table 12: Estimation results for the residuals: ARCH (1) GARCH-3 after 1972 

Variable Coefficient z-value 

ARCH-1 - 0.1258936 - 2.31 

GARCH-3 - 0.8291315 - 4.94 

constant 49122.67 3.56 

As we can see from two estimations above, coefficients of the model are insignificant 

before 1972 and become highly significant after 1972. That’s why it is reasonable to 

suggest that 1972 year is a breakpoint in our dataset. This breakpoint suggests that 

variance or magnitude of the rain variable changes over time.  
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Based on the data we use, I can state that rain variable does not have highly significant 

trend, but there is exist increase in magnitude with respect to rain patterns in Atlantic 

Canada. Since rain variable is one of the major determinants of flood in our model and 

rain is positively correlated with flood occurrence, I can claim that flood behavior 

follows the same patterns as rain does. 

4.3 Probability of floods and climate change 

To show how our methodology works, I would use not very statistically significant 

trend for the rain variable that is equal to 0.187374. First, I found mean of the estimated 

probability of flood according to our estimation based on complementary log-log 

transformation model. This mean is approximately equal to 0.372505 and I denote it 

as initial probability and assign this value to 2016 – the following year after the last 

year in our sample. Then I intend to find rate of change of the probability of flood 

occurrence in the future. To perform this, I multiply trend coefficient in the rain 

estimation by the rain coefficient in the basic model of the flood probability estimation 

in step one. Since our initial estimation is done using link function – complementary 

log-log transformation, it was necessary to convert rain coefficient back to marginal 

effect. It was done using Stata postestimation command margins. When all covariates 

are at observed values, the marginal effect of rain variable is equal to 0.0012437. It 

means that the probability of occurring flood in the given year increases by the number 

above with every additional millimeter of rain per year. So, expected change in the 

probability of flood occurrence per year is equal to: 0.0012437×0.187374, which is 

approximately equal to 0.000233 or 0.0233%. This is annual change of probability of 

flood in Atlantic Canada. The resulting graph that presents our forecast from 2016 to 

2100 is shown below. 
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Figure 4: Expected probability of flood by the end of the current century 

 

Coupled with other studies, it is possible to set up policy recommendations. For 

example, Burina (2017) suggests expected average loss from floods is equal to $9.5 

millions annually. Based on our findings, we could state expected loss from floods in 

Atlantic Canada will increase by 9,500,000×0.02 = $190,000 on annual basis by the 

end of the current century.  
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Chapter 5. Conclusions, limitations and future work 

Extreme weather events are one of the most destructive and damaging consequences 

of climate change. This study shows that floods prevails among various large weather 

events in Atlantic Canada. This paper tests the hypothesis that climate change leads to 

an increase in frequency and magnitude of floods. To show this, a two-step procedure 

was established. In step one, we estimate probability of floods as a function of climate 

and hydrological variables based on complementary log-log transformation model. 

We found a positive relationship between probability and rainfall – major climate and 

hydrological variable simultaneously. In step two, dynamics of rainfall time series was 

analyzed and decomposed to find exact time path of it. It is shown in the study that 

rainfall magnitude increases over time; change in rainfall variance is considered as 

demonstration of climate change in Atlantic region. Finally, two steps were combined 

to make a framework for probability forecasting. If we follow our trend point estimate 

from step two, the results show that probability of floods is going to increase by two 

percentage points by the end of this century due to ongoing climate change. Since 

climate change in this study is viewed via change in the dynamics of rainfall, another 

important conclusion of this study is: climate change in Atlantic Canada can be dated 

back to 1972. This conclusion is in accord with earlier conducted studies in the region 

specifically the ones done in the Department of Economics at the University of New 

Brunswick (Fredericton, Canada). 

However, there are two main limitations in this study. First, I focused mostly on 

climate and hydrological variables as floods predictors. It is possible that some other 

economic or social variables would be reasonable to include in our model. 

The second limitation is that we have used aggregated rainfall variable – in annual 

format. As we can see from our estimations, linear trend of the rain variable is not very 
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significant. It might be explained by the fact that rain patterns could be sharply 

different within the province during some periods of time within a year. I assume that 

using the monthly or ideally daily data could improve the situation towards higher 

significance. 

Finally, future research would be essential to address our limitations. One might add 

some additional variables as flood predictors and test their relevance to the model. For 

example, it could be average temperature in the month of the event or deviation of 

annual average temperature from its trend. More importantly, less aggregated data, 

especially for rainfall series, could be used to provide even stronger results. As stated 

above, monthly or daily data should provide more reliable outcome of the model. 
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