
Detection and Prevention of Changes in the

DOM Tree

by

Junaid Iqbal

Bachelor of Science in Information Technology, BZU, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Computer Science

In the Graduate Academic Unit of Computer Science

Supervisor: Natalia Stakhanova, PhD, Faculty of Computer Science
Examining Board: Rongxing Lu, PhD, Faculty of Computer Science, Chair

Dima Alhadidi, PhD, Faculty of Computer Science
Rickey Dubay, PhD, Department of Mechanical Engineering

This thesis is accepted by the

Dean of Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

August, 2018

c©Junaid Iqbal, 2018

Abstract

The current generation of client-side Cross-Site Scripting filters are mostly

browser-based tools and do not allow the web developers to control authorized

or unauthorized modifications of the web page’s Document Object Model

(DOM). In this thesis, we propose a policy-based and browser-based pro-

tection mechanism to detect and prevent unauthorized tampering with the

DOM. To examine the efficiency and feasibility of our approach, we imple-

ment the proposed solution in an open source web browser, Chromium. Our

proposed approach has little performance overhead and effectively detects

malicious modifications of the DOM. We also conduct a thorough analysis of

the current state-of-the-art policy-based MutationObserver API and uncover

a set of limitations.

ii

Dedication

This thesis work is dedicated to my wife, Mariam, for supporting me through

the ups and downs of life. I am truly blessed for having you in my life.

This work is also dedicated to my parents for their unconditional love, nu-

merous sacrifices, and blessings.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Natalia

Stakhanova for her guidance, support, and encouragement throughout the

entire process. I have been extremely lucky to have a supervisor who cared

so much about my work, and who responded to my questions and queries

so promptly. I am grateful to my thesis committee members, Dr. Rongxing

Lu, Dr. Dima Alhadidi, Dr. Rickey Dubay, and Dr. Patricia Evans, who

were more than generous with their expertise and precious time. A special

thanks to my colleague, Dr. Ratinder Kaur for the contribution of her ideas

in this research. I would also like to thank the members of the faculty for

their support. Finally, I must express my profound gratitude to my parents,

and my wife who endured this long process with me. This accomplishment

would not have been possible without them. Thank you.

iv

Table of Contents

Abstract ii

Dedication iii

Acknowledgments iv

Table of Contents vii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Our Approach . 7

1.2 Contribution . 8

2 Background and Related Work 10

2.1 Background . 10

2.2 Related Work . 11

2.2.1 Browser-based . 12

v

2.2.2 External Tools . 13

2.2.3 Policy-based . 14

2.3 Analysis of MutationObserver 16

2.3.1 Limitations of MutationObserver 17

2.3.2 MutationObserver and Other APIs 20

3 Proposed Solution 22

3.1 DOM Security Policy . 23

3.1.1 DSP Directives . 24

3.1.1.1 General Directives 25

3.1.1.2 Tag-Specific Directives 30

3.2 DOM Monitoring Module . 32

3.3 Client-side working of Proposed Solution 34

4 Implementation and Experimental Results 37

4.1 Implementation . 37

4.2 Experimental Results . 38

4.2.1 Analysis of our approach ability to detect and prevent

unauthorized requests 39

4.2.2 Analysis of the implemented solution overhead on the

client’s system . 39

4.2.2.1 Manual Evaluation 42

4.2.2.2 Benchmark Evaluation 43

vi

4.2.3 Analysis of the proposed system ability to handle ob-

fuscated requests . 43

4.2.4 Comparative analysis of our approach to existing tools

and techniques . 45

4.2.4.1 MutationObserver and other similar APIs . . 45

4.2.4.2 Other Related Approaches 47

5 Conclusion and Future Work 49

5.1 Conclusions . 49

5.2 Future Work . 50

Bibliography 56

Vita

vii

List of Tables

2.1 Experimental Evaluation of MutationObserver API 18

2.2 Experimental Evaluation of other similar APIs 21

3.1 Selectors available in DOM Security Policy 25

3.2 DOM Security Policy Directives 32

4.1 Results of Manual Performance Evaluations (in miliseconds) . . 42

4.2 Results of Benchmark Performance Evaluations 43

4.3 DOM Security Policy, MutationObserver and other similar APIs 46

4.4 Comparison of DOM Security Policy with other related ap-

proaches . 48

viii

List of Figures

1.1 Fifteen most popular languages on GitHub in 2017 by opened

pull request [17] . 2

1.2 Types of Cross-Site Scripting (XSS) [22] 3

1.3 DOM-based XSS Attack . 5

2.1 Example of DOM representation of a web page 11

3.1 High Level Diagram . 23

3.9 Overview of DOM Monitoring Module 33

3.10 Client-side working of proposed solution 34

4.1 Test Case Example . 40

4.2 Blocked Request . 41

4.3 Accepted Request . 41

ix

Chapter 1

Introduction

In recent times, client-side web applications have become more popular be-

cause of faster response time and low burden on servers’ resources. The

JavaScript language has become a de-facto standard for developing these

types of applications. It can be used to build games, browsers or even an

operating system [1, 4, 16, 18]. The most popular applications such as Gmail

or Google Docs are fully developed using JavaScript. In 2017, it was the

most popular language on the GitHub platform [17]. Figure 1.1 shows the

fifteen most popular languages in 2017 on GitHub by opened pull request.

Due to a tremendous increase in the development and usage of JavaScript

applications, it attracts the attention of attackers. Since users’ personal and

sensitive information is transferred through these applications, security be-

comes an important concern. Currently, JavaScript based applications have

many security holes including Cross-site Scripting (XSS). The XSS attacks

1

Figure 1.1: Fifteen most popular languages on GitHub in 2017 by opened
pull request [17]

occur when user supplied data are included in a web application without

proper validation.

Ever since its initial discovery in 2000 [33], XSS has been a very common

security vulnerability and is found in around two thirds of all web applica-

tions [20]. The task of detecting these attacks is becoming more challenging

as attackers can use various JavaScript obfuscation techniques [45] to hide

the malicious payload. Obfuscation is a process of transforming the original

code into a form that is difficult to read, understand, or reverse engineer

2

while retaining the actual functionality of the code. Transforming the ma-

licious JavaScript requests helps attackers to bypass certain XSS defensive

filters [27].

XSS can be broadly categorized into two types [22]: Server XSS and Client

XSS. Server XSS attacks occurs when user supplied data that could be mali-

cious are included in the HTML response generated by the server. Whereas,

the Client XSS attacks occurs when untrusted user supplied data is used to

update the DOM with an unsafe JavaScript call. Both Server XSS and Client

XSS can be Stored and Reflected as shown in Figure 1.2.

Figure 1.2: Types of Cross-Site Scripting (XSS) [22]

Reflected XSS attacks generally occur when the attack payload is sent to the

web application and immediately reflected back to the web browser in the

form of search results or error messages without the data being sanitized. In

3

this type of XSS, the data are not stored on the client or server. Stored XSS

attacks occur when untrusted data are stored on the client or server side for

later use. Data are not properly validated and when the victim requests the

stored information, he is able to retrieve the malicious data.

Server XSS have been known for a number of years while Client XSS, also

termed DOM(Document Object Model)-based XSS, was first introduced in

2005 [36]. The Document Object Model (DOM) is a programming API

for accessing and modifying HTML and XML documents. DOM is a way

JavaScript code can communicate with HTML elements on a web page. In

DOM-based XSS, the attack payload is executed as a result of modifying the

DOM environment in the victim’s browser used by the original client-side

script, so that the client-side code runs in an unexpected manner [19].

DOM-based XSS attacks are different from Server XSS attacks because the

HTML source code and response of the attack stays the same, but the client-

side code executes differently due to malicious modifications by the attacker,

whereas in Server XSS, vulnerable payload can be seen in the response page.

DOM-based XSS vulnerabilities exist entirely in the client-side JavaScript

and are becoming more and more of a threat as web applications are providing

increasingly richer client-side functionality.

DOM-based vulnerabilities are very difficult to detect because the target of

the malicious payload is the browser, as compared to other attacks where

target is the server. In a recent study, it was shown that nearly 10% of Alexa

Top 5000 websites contain at least one DOM-based XSS vulnerability [37].

4

Most of the popular web applications such as Google+ and Twitter have

been vulnerable to DOM-based XSS attacks [21, 2, 8].

Server-side attack detection and prevention systems are not able to provide

protection against DOM-based XSS attacks because there are some cases in

which attack payload cannot be seen by the server, for example, in an HTTP

request like http://www.example.com/ test.html#〈script〉alert(1)〈/script〉, the

malicious payload which appears after a # character is not sent by the web

browser to the server. Figure 1.3 shows the graphical representation of DOM-

based XSS attack.

Figure 1.3: DOM-based XSS Attack

To provide protection against this type of attacks, many state-of-the-art

browser-based tools are designed and implemented, e.g., XSS Auditor [26]

5

and DOMinator [29]. XSS Auditor is a browser-based tool that automati-

cally detects and prevents XSS attacks. The Auditor employs string com-

parison to detect the injection of malicious strings. However, it has several

shortcomings related to DOM-based XSS [44] including not being able to

detect attacks if malicious code was not found during the initial parsing of

HTML response or allowing the attack to mislead the string-matching algo-

rithm to bypass the filter. To evade DOM-based XSS, inspections at DOM

level are necessary. However, the Auditor works only at the parsing level and

therefore is not able to fully detect DOM-based XSS attacks.

DOMinator is a Firefox browser-based tool that utilizes dynamic taint track-

ing to identify DOM-based XSS vulnerabilities. MutationObserver [13] is

another solution focus on detecting changes in the DOM. However, it notifies

after the change has already occurred. Both DOMinator and MutationOb-

server focus only on the detection part rather than prevention. In this work,

we address this gap.

The existing browser-based tools do not have the capability to differentiate

between authorized or unauthorized DOM modifications. They automati-

cally detect and prevent the change without considering the security require-

ments of web applications. They lack server-side control and do not allow

the web developer to specify the authorized or unauthorized modifications in

the DOM.

In this work, we have pursued the following research question:

• Can we protect web applications from unauthorized tampering with a

6

web page’s DOM by providing server-side control as well as automatic

client-side protection?

1.1 Our Approach

To answer the above research question, we aim to provide a novel protection

mechanism to detect and prevent unauthorized tampering with the DOM.

The protection mechanism makes use of the enriched policy language DOM

Security Policy (DSP) that can be used by web developers to define security

policies. The policies can be applied on HTML elements as per the security

requirements of the web application. The policies are delivered to the web

browser through a new HTTP header named ”DOM-Security-Policy.” The

DOM Monitoring Module is designed and implemented to enforce policies on

the client-side to either allow or block the incoming requests. The proposed

solution provides developers better control of a web page’s DOM by specify-

ing policies. The solution can be easily deployed in all web browsers which is

made evident by our prototype implementation in an open source browser,

Chromium. We propose to detect and prevent the malicious request even

if the attacker payload is obfuscated. The proposed solution provides an

added layer of security against DOM-based XSS attacks. We have evaluated

the performance of our approach with two popular JavaScript performance

benchmarks: Dramaeo [28] and Speedometer [31].

7

1.2 Contribution

Our main contributions are as follows:

• Design and development of a protection mechanism for mitigation of

DOM-based XSS attacks with the following characteristics:

– Server-side control as well as automatic client-side protection

– Compatible with existing web applications

– Resilient to obfuscated malicious requests

– Less performance overhead

• Demonstration of practical applicability of the proposed technique by:

– Modifying an open source browser to show the feasibility of our

approach.

– Performing experiments that demonstrate the effectiveness of our

mechanism in detecting and preventing unauthorized modifica-

tions to the web page’s DOM.

– Conducting experiments that evaluate the performance of the pro-

posed approach, specifically the overhead, the solution brings to

the web browser.

The remainder of this thesis is structured as follows: Chapter 2 provides

background, related work, and analysis of MutationObserver API. Chapter 3

8

explains the proposed approach in detail. Chapter 4 describes implementa-

tion, evaluation results, and comparison of the proposed solution with pop-

ular tools and techniques. Finally, we summarize our findings, conclusions,

and future work in Chapter 5.

9

Chapter 2

Background and Related Work

2.1 Background

A web page is a document which can either be displayed in a browser window

or as the HTML source. Both representations refer to the same document.

Document Object Model (DOM) is a programming API for accessing and

modifying HTML and XML documents. The DOM is a way JavaScript code

can communicate with HTML elements on a web page. It is an object-

oriented representation of the web page which can be manipulated through a

scripting language such as JavaScript. Figure 2.1 shows an example of DOM

representation of a basic web page.

DOM represents an HTML document as a tree structure where each node is

an object representing a part of the document and the topmost node named

”Document object.” When a web page is loaded, the browser creates the

10

Figure 2.1: Example of DOM representation of a web page

DOM of the page that acts as an interface between JavaScript and DOM

itself for the creation of dynamic web pages [11]. Web browsers depend on

layout engines to parse HTML into DOM. Some layout engines including

Blink [3], WebKit [25], and Gecko [9] are shared by a number of browsers

such as Google Chrome, Chromium, Opera, Safari, and Firefox.

Any unauthorized changes in a DOM can have adverse effects on the web

application causing security breach and loss of sensitive information. It is es-

sential to ensure the integrity of DOM to protect users’ personal information

such as username/password, credit card number etc.

2.2 Related Work

The related work in the area of DOM-based XSS can be divided into three

categories: 1) Browser-based, in which the solution is available as an auto-

matic attack detection and prevention tool embedded in a web browser. 2)

11

External Tools, in which the solution is available as an external tool to analyze

web applications to identify DOM-based XSS vulnerabilities 3) Policy-based

approach, that allows web developers to specify policies on web pages to

detect or prevent any unauthorized modifications of the DOM.

2.2.1 Browser-based

These studies focussed on designing and implementing a solution that is

embedded in a web browser to automatically detect and prevent DOM-based

XSS attacks.

Lekies et al. [44] designed a filter for DOM-based XSS that utilizes runtime

taint analysis and a taint-aware parser to stop the execution of attacker-

controlled syntactic content. The filter is composed of two interconnected

components: Taint-enhanced JavaScript engine [37], and Taint-aware JavaScript

HTML parser. The JavaScript engine tracks the data flow from attacker con-

trolled sources such as document.URL, document.cookie. The parser detects

the generation of malicious code from traced values, resulting in rejection of

the code from being executed. The authors implemented the filter in an open

source browser, Chromium, and performed experiments using a set of 1,602

real-world vulnerabilities, achieving a rate of 73% successful filter bypasses.

Parameshwaran et al. [41] developed a system called DEXTERJS based on

auto-patching. DEXTERJS can be embedded in a standard web browser and

automatically patches DOM-based XSS vulnerabilities. The system works by

performing dynamic analysis to detect, modify, and repair DOM-based bugs.

12

The patches can be applied directly to the web application via hot-patching.

DEXTERJS first analyzes the given JavaScript application, identifies the

positioning of all dynamic code evaluation (DCE) points and checks whether

they are exploitable or not. If they are exploitable, the system marks them

as patch points. DEXTERJS utilizes dynamic taint-tracking to identify the

attacker-controlled bytes in the string. The hot-patching includes adding

hooks at the patch points, so the program will execute the patch function

instead of the original code.

The browser-based tools do not have the capability to differentiate between

authorized and unauthorized modifications. They automatically detect and

prevent the attack without considering the security requirements of the web

application. They are embedded in web browsers and cannot provide server-

side control.

2.2.2 External Tools

These studies provide developers a way to perform the security assessment

of web applications to identify DOM-based XSS vulnerabilities.

Nguyen et al. [38] introduced a distributed scanning tool for crawling modern

dynamic websites generated by JavaScript. The tool consists of two compo-

nents: crawler and scanner. The crawler uses hooking techniques to crawl

websites, and the scanner detects the suspicious code. The study analyzes

Alexa’s top 1000 websites using two benchmarks: IBM JavaScript test suite

and Google’s Firing Range. The evaluation results show zero false negative

13

rates.

Saha et al. [42] proposed a DOM-based XSS vulnerabilities detector that

utilizes data-flow analysis technique [32]. The detector works by accepting

a JavaScript embedded HTML file as an input and building its abstract

syntax tree (AST). The control flow graph is created by converting AST

into a linearized form resembling three-address code [39]. The detector then

analyzes the data from malicious sources (URL, cookie, location) to sink

(write) and checks whether data is filtered before reaching the sink. Lastly,

it shows a message if the given HTML page is vulnerable or not.

External tools are helpful for web developers to separately analyze the web

application for the identification of DOM-based XSS vulnerabilities. It re-

quires modifications in the web application’s source code to fix the identified

vulnerabilities. The developers usually do not have much security back-

ground to repair web applications against DOM-based XSS attacks.

2.2.3 Policy-based

A policy-based approach allows developers to detect or prevent unauthorized

modifications to web pages.

MutationEvents [12] is an API that allows web developers to be notified of

and react to changes made to the DOM. The API cannot be used to prevent

unauthorized changes as it notifies after the change has already occurred.

This API has been depreciated because of poor performance and lack of

support among web browsers.

14

MutationObserver [13] is proposed as a replacement of MutationEvents,

providing better performance, reliability, and cross-browser support. Mu-

tationObserver identifies changes which are already occurred in the DOM.

MutationObserver cannot prevent modifications of the DOM, but it provides

developers with a way to react to those modifications that has already oc-

curred. The developers can use MutationObserver inside the web application

providing better control as compared to other tools that are used outside the

web application environment. Our analysis revealed several limitations in

MutationObserver which are discussed in Section 2.3.

Content Security Policy (CSP) [43] is a whitelist, and per-page policy lan-

guage that helps prevent XSS and data injection attacks. CSP is a W3C

standard and is now supported by all major web browsers. It allows the de-

veloper to control contents of a web page by specifying policies via directives.

The proposed approach also has directives but with a more adjustable fine-

grained control over the web page’s DOM. At the same time, the proposed

solution allows specifying policies per-tag, per-id, and per-class of HTML

elements while CSP operates only on per-page level.

Oda et al. [40] proposed Security Style Sheets (SSS) whose syntax is simi-

lar to Cascading Style Sheet (CSS). CSS is used for adding style to a web

document. SSS has three directives: domain-channels, page-channels, and

execution. The domain-channels directive focuses on the whitelisting of do-

mains for loading third party contents, page-channels directive controls the

whitelisting of HTML elements within a webpage, and execution directive

15

controls the execution of JavaScript. SSS directives are not fine-grained and

cannot provide protection against DOM-based XSS attacks. The proposed

approach is an extension of SSS with more focus on detecting and preventing

unauthorized tampering with the DOM.

SIACHEN [34] is a whitelist, per-id, per-class policy language for the mitiga-

tion of XSS attacks. SIACHEN syntax is similar to CSS and its semantics are

based on CSP. SIACHEN has several directives that allow developers to cre-

ate whitelists of trusted domains for loading third party resources. SIACHEN

mainly focuses on reflected XSS and provides protection against malicious

third party contents. It cannot prevent DOM-based XSS attacks.

The above policy-based tools can protect web applications against reflected

or stored XSS attacks, but they are not enough against DOM-based XSS

attacks. The proposed solution combines the browser-based and policy-based

approach to protect web page’s DOM from unauthorized modifications that

provides an added layer of security against DOM-based XSS attacks.

2.3 Analysis of MutationObserver

MutationObserver is a powerful web API that can be used to detect different

types of changes in the DOM. It has provision to specify a target node to

monitor for changes. The target node can be any HTML element e.g., div,

input, button etc. It has several options that can be activated to provide

notifications about the changes occurring inside the specified target element.

16

The options are:

• attributes: Set to true if target’s attribute modification needs to be

observed.

• attributeOldValue: Set to true if target’s attributes old value before

modification needs to be recorded.

• attributeFilter: Set to an array of attribute names whose modifications

need to be observed.

• childList: Set to true if addition and removal of target’s child nodes

need to be observed.

• characterData Set: Set to true if target’s data need to be observed.

• subTree: Set to true if target’s descendants need to be observed.

• characterDataOldValue: Set to true if target’s data before modification

need to be recorded.

2.3.1 Limitations of MutationObserver

MutationObserver is a popular API and is now being used in over 128,000

websites [15]. To evaluate the effectiveness of this API, several experiments

were performed on Google Chrome, version 67.0.3396.99; Mozilla Firefox,

version 60.0.2; Safari, version 11.1; and Opera, version 54.0.2952.51. It is

observed that MutationObserver API is a very effective way to detect changes

17

in the DOM and is supported by all major web browsers. However, there are

some scenarios where this API does not notify about DOM modifications.

Once the web page is loaded inside the web browser, there is a limited set

of JavaScript DOM API functions [7] that can be used to update the DOM.

We tested all functions to evaluate the MutationObserver API. Some basic

DOM operations such as adding or deleting nodes, changing attribute values

etc, are tracked by MutationObserver. There are a few advanced features

such as shadow DOM and graphic APIs that can also affect the DOM which

cannot be tracked by MutationObserver. Table 2.1 shows the experimental

results of our analysis.

Mutation
Type

Result Mutation Type Supported by

Node insertion Able to detect Google
Chrome

Mozilla
Firefox

Safari Opera

Node removal Able to detect Yes Yes Yes Yes
Attribute
change

Able to detect Yes Yes Yes Yes

Change in sub
tree

Able to detect Yes Yes Yes Yes

Removing target
node

Not able to detect Yes Yes Yes Yes

〈canvas〉, 〈svg〉
graphics

Not able to detect Yes Yes Yes Yes

Shadow DOM
Attachment

Not able to detect Yes NA Yes Yes

Shadow DOM
Changes

Not able to detect Yes NA Yes Yes

Table 2.1: Experimental Evaluation of MutationObserver API

18

Our results show that MutationObserver API is very effective in detecting

various changes in the DOM. It has the following limitations:

• Removing target node: MutationObserver does not have the mech-

anism to report if the target node itself is removed, for example, if

the target node is a login form inside a web page to observe changes

e.g., 〈div〉. If somehow that login form is removed and replaced by an

attacker through execution of malicious JavaScript, there is no notifi-

cation from MutationObserver. This can result in sensitive information

of the user being stolen.

• 〈canvas〉, 〈svg〉 graphics: The 〈canvas〉 tag is used to draw graphics

on the fly via scripting. Drawing graphics using scalable vector graphics

(SVG) and embedding them into the 〈canvas〉 tag is not trackable

by MutationObserver. Moreover, modifying the graphics in SVG e.g.,

change in image size, or replacement of image cannot be observed.

This limitation can have a severe effect if malicious JavaScript is being

injected into the SVG by the attacker.

• Shadow DOM Attachment: The shadow DOM allows hidden DOM

trees to be attached to elements in the regular DOM tree. The subtree

created by shadow DOM is rendered on a web page but does not become

part of the document’s DOM tree. The main purpose of the shadow

DOM is to hide the implementation details by encapsulating part of

DOM tree. Shadow DOM is supported by all major web browsers

19

except Firefox which will be added in the next release of Firefox version

63 [23]. MutationObserver has no mechanism to track the attachment

of the shadow DOM to the target element. The attacker can exploit

this limitation by attaching a shadow DOM over sensitive area of a

webpage e.g., login form, to steal the user’s login credentials.

• Shadow DOM Changes: MutationObserver does not have the ca-

pability to track changes occurring inside the shadow DOM.

2.3.2 MutationObserver and Other APIs

There are some other APIs similar to MutationObserver that also detect

changes in the DOM but most of them are built on top of MutationOb-

server to provide some additional functionalities, e.g., providing better log

reporting or compatibility with specific platform like NodeJS. These APIs

include Mutation-Summary [14] and WatchDOM [24]. Similar experiments

were performed on these APIs to understand whether or not MutationOb-

server limitations were correlated. The results of the experiments are shown

in Table 2.2.

Our results show that Mutation-Summary and WatchDOM also have the

same limitations as MutationObserver. As the shadow DOM was not sup-

ported by Firefox, experiments were not conducted.

20

Mutation
Type

Mutation-
Summary

Watch-
DOM

Mutation Type Supported by

Google
Chrome

Mozilla
Firefox

Safari Opera

Removing
target node

7 7 Yes Yes Yes Yes

〈canvas〉,
〈svg〉 graph-
ics

7 7 Yes Yes Yes Yes

Shadow
DOM At-
tachment

7 7 Yes NA Yes Yes

Shadow
DOM
Changes

7 7 Yes NA Yes Yes

Table 2.2: Experimental Evaluation of other similar APIs

21

Chapter 3

Proposed Solution

In this chapter, we propose a protection mechanism against unauthorized

tampering with a web page’s DOM providing an added layer of security

against DOM-based XSS attacks. The proposed solution allows developers

to have better control of a web page’s DOM by defining security policies.

The proposed mechanism is a hybrid of browser-based and policy-based ap-

proaches. It contains built-in policies and also allows developers to define

their own security policies according the security requirement of the web ap-

plication. Figure 3.1 shows the high level diagram of the proposed solution.

The solution is composed of two main components: DOM Security Policy

(DSP) and DOM Monitoring Module (DMM). The DSP provides server-side

control by allowing developers to specify security policies on HTML elements.

The DMM provides automatic client-side protection by enforcing built-in and

developer specified policies. The DMM detects and prevents unauthorized

22

Figure 3.1: High Level Diagram

modifications in the DOM. It analyzes each incoming DOM modification re-

quest and allows or blocks requests based upon built-in policy or developer

specified policy. It is designed inside the web browser’s rendering engine and

monitors native DOM APIs for detecting the DOM modifications. It does

not depend upon JavaScript code that could be obfuscated, to detect changes

of the DOM. Due to the designing nature of the proposed solution, the ob-

fuscated JavaScript requests are not able to bypass the DOM Monitoring

Module.

3.1 DOM Security Policy

DOM Security Policy is a fine-grained, blacklist/whitelist policy language.

DSP operates per-id, per-class, or per-tag of a web page’s HTML elements. It

provides adjustable control over the web page’s DOM and a clear separation

23

of security policy language from the web page’s contents. The generic syntax

of DSP is shown in Figure 3.2.

1 // u s i n g one s e l e c t o r to a p p l y p o l i c y d i r e c t i v e

2 #ElementSe lector {

3 −−DSP Di r e c t i v e Name : value ;

4 }

5
6 // u s i n g m u l t i p l e s e l e c t o r s to a p p l y p o l i c y d i r e c t i v e

7 #ElementSelector , . C l a s sSe l e c to r , TagName {

8 −−DSP Di r e c t i v e Name : value ;

9 }

Figure 3.2: Generic Syntax of DOM Security Policy

DSP syntax is similar to CSS. The idea of using CSS syntax as a security

policy language is not new. Oda et al. [40] proposed Security Style Sheets

(SSS) based on CSS syntax. DOM Security Policy is consistent with SSS in

terms of using CSS like syntax for defining a security policy language. We

have extended this work with a focus on detecting and preventing unautho-

rized tampering with the DOM. We developed several directives that can be

used to specify authorized and unauthorized modifications of the DOM.

CSS provides different types of selectors which are used to select elements

for styling [6]. DSP operates on per-id, per-class, or per-tag selector. Table

3.1 shows the selectors available in DOM Security Policy.

3.1.1 DSP Directives

DOM Security Policy is composed of several directives that web developers

can use to specify policies on a HTML element or set of elements. Each

24

Selector Syntax Example Description

Per-id #id #Menu Selects all elements with id=”Menu”
Per-class .class .paragraph Selects all elements with

class=”paragraph”
Per-tag tagname img, script Selects all 〈img〉 and 〈script〉 ele-

ments

Table 3.1: Selectors available in DOM Security Policy

directive has a name and a value and controls a specific type of modifications

in the DOM. These directives allow web developers to specify what part

of the DOM should be modified or not. DSP directives are based on CSS

custom properties [5], which requires (--) sign before any property name.

DSP directives are divided into two main categories: General Directives and

Tag-specific Directives. Each directive has a default built-in policy. If the

developer does not specify the DSP directive, the default policies can be

automatically enforced by the DOM Monitoring Module.

3.1.1.1 General Directives

The general directives can be applied to any HTML tag. The directives are:

• allow-event-modification: The user interaction with HTML elements

happens through events. HTML DOM events allow JavaScript to de-

tect when a user performs a certain action e.g., clicking an element,

or hovering over an element. Events are an important part of DOM.

Each HTML tag has a set of events that execute JavaScript code. The

25

security of the legitimate events is very important as they can be used

by attackers to steal user sensitive data.

The allow-event-modification directive protects the DOM from any

unauthorized attachment or modification of events. The value of the

directive must be true or false. If this directive is present in policy with

a false value, the DOM Monitoring Module blocks all event modifica-

tion requests on the specified elements. If the policy is present without

this directive, then the default value is true which allows all the events

to be attached and modified without any restrictions.

Figure 3.3 shows an example of the allow-event-modification directive

blocking event modification requests in all the images on a web page.

1 // H T M L c o d e

2

3
4 // C o r r e s p o n d i n g DOM S e c u r i t y P o l i c y

5 img {

6 −−al low−event−mod i f i c a t i on : fa l se ;

7 }

Figure 3.3: Example of allow-event-modification

• event-blacklist: contains a blacklist of event names which are not

allowed to be modified. The value of the directive must be a comma

separated list of the event names. The DOM Monitoring Module blocks

all requests that try to modify the events present in this directive value.

All the other events are allowed to be modified.

26

Figure 3.4 shows an example of event-blacklist directive to prohibit the

click event to be modified for all the input elements on a web page.

1 // H T M L c o d e

2 <input type=" b u t t o n " value=" L e g i t b u t t o n " onc l i c k=" a l e r t (’ I am l e g i t ! ’) " />

3 <input type=" c h e c k b o x " onc l i c k=" a l e r t (’ I am l e g i t ! ’) " />

4
5 // C o r r e s p o n d i n g DOM S e c u r i t y P o l i c y

6 input {

7 −−event−b l a c k l i s t : c l i c k ;

8 }

Figure 3.4: Example of event-blacklist

• event-whitelist: contains a whitelist of event names which are allowed

to be modified. The value of this attribute must be a comma separated

list of the event names. The events listed in this directive value can be

allowed to be modified, all the other events modification requests are

blocked.

• allow-attribute-modification: HTML attributes are an integral part

of DOM. When the browser parses the HTML elements and creates the

DOM, it recognizes the standard attributes and creates DOM proper-

ties from them. Every HTML tag contains a set of attributes.

The allow-attribute-modification policy directive protects the DOM from

any unauthorized attribute addition, deletion, or change in value. It

controls the requests that modify the attributes of HTML tags. The

value of the directive must be true or false. If this directive is present

in policy with a false value, the DOM Monitoring Module blocks all

27

attribute modification requests on the specified elements. If the policy

is present without this directive, then the default value is true which

allows all the DOM attributes to be modified without any restrictions.

1 // H T M L c o d e

2 <div class=" S e c u r e " id=" l o g i n "></div>

3 <p class=" S e c u r e " id=" p a r a g r a p h ">some text</p>

4
5 // C o r r e s p o n d i n g DOM S e c u r i t y P o l i c y

6 . Secure {

7 −−al low−a t t r ibu t e−mod i f i c a t i on : fa l se ;

8 }

Figure 3.5: Example of allow-attribute-modification

Figure 3.5 shows an example of allow-attribute-modification directive to

block attribute modification requests of all the tags with class=”Secure”.

• attribute-blacklist: contains a blacklist of attribute names which are

not allowed to be modified. The value of this directive must be a

comma separated list of the attribute names. The DOM Monitoring

Module blocks all requests that try to modify the attribute present in

this directive value. All other attribute modifications are allowed.

1 // H T M L c o d e

2 <div id=" l o g i n " name=" r e s t r i c t e d "></div>

3 <p class=" S e c u r e " id=" p a r a g r a p h " name=" t e x t ">some text</p>

4
5 // C o r r e s p o n d i n g DOM S e c u r i t y P o l i c y

6 div , . Secure {

7 −−a t t r ibu te−b l a c k l i s t : name , id ;

8 }

Figure 3.6: Example of attribute-blacklist

28

Figure 3.6 shows an example of attribute-blacklist directive to block the

modification of name, and id attribute of div tags and all other tags

with class=”Secure”.

• attribute-whitelist: contains a whitelist of attribute names which are

allowed to be modified. The value of this attribute must be a comma

separated list of the attribute names. The attributes listed in this

directive value can be modified, while all other attribute modification

requests are blocked.

• allow-style-modification: controls whether the styling of specified

elements can be changed or not. The value of this directive must be

true or false. If this directive is present in policy with a false value,

the DOM Monitoring Module blocks all styling requests (e.g., change

color, background, font etc) on the specified elements. The default

value of this directive is false, which blocks the execution of all DOM

style modification requests.

• allow-shadow-attachment: controls the attachment of the shadow

DOM on HTML elements. The shadow DOM allows hidden DOM

trees to be attached to elements in the regular DOM. It has several

benefits e.g., encapsulating part of the DOM tree, and hiding the im-

plementation details from the user but if it is not controlled properly,

it can be used by an attacker to steal sensitive user information. The

value of the directive must be true or false. By default, it is false,

29

which means the shadow DOM cannot be attached to any element of

the web page unless specifically allowed by the web developer. Existing

techniques such as MutationObserver do not have the ability to track

the attachment of the shadow DOM.

• protected: controls any type of modification on a specified element

e.g., restricted areas like password input fields, or login forms. This

directive specifies the area as fully protected. The value of this attribute

must be true or false. If this directive is present in a policy with a true

value, the DOM Monitoring Module blocks all requests related to the

attribute modification, style modification, and shadow attachment on

the specified elements. By default, the value of this directive is false.

This means no elements are protected by default unless specified.

3.1.1.2 Tag-Specific Directives

The tag-specific directives control where a type of resource may be loaded.

These directives can only be applied to 〈a〉, 〈img〉, 〈script〉, 〈audio〉, 〈video〉,

〈source〉, 〈track〉, and 〈object〉 tags. This set of tags are mostly used in

common websites and if not handled properly could result in making the

website vulnerable to DOM-based XSS attacks. As these tags can be used

to load third-party contents, so they should be monitored properly. The

DOM Security Policy provides the web developer an easy way to control the

resources coming from third parties to prevent the execution of any malicious

content such as malicious JavaScript, malicious URLs etc. The directives are:

30

• domain-blacklist: contains a blacklist of domains which have been

disapproved for loading third party contents. The value of this directive

must be a comma separated list of domain names which are not allowed

for loading contents such as image, JavaScript, URLs etc.

1 // DOM S e c u r i t y P o l i c y

2 img {

3 −−domain−b l a c k l i s t : www. example . com ;

4 }

Figure 3.7: Example of domain-blacklist

Figure 3.7 shows an example of the domain-blacklist directive to block

the loading of images from www.example.com.

• domain-whitelist: contains a whitelist of domains which are allowed

to be used as a source for loading contents in the tags listed above. If

no domain is specified, the default built-in policy allows resources to

come from the web page’s own domain only.

Figure 3.8 shows an example of the domain-whitelist directive to load

all the images, audios, and videos only from www.example.com.

1 // DOM S e c u r i t y P o l i c y

2 img , audio , v ideo {

3 −−domain−wh i t e l i s t : www. example . com ;

4 }

Figure 3.8: Example of domain-whitelist

Table 3.2 summarizes all the DOM Security Policy directives.

31

Category Directive Accepted Value Default-
Value

General allow-event-modification true or false true
event-blacklist comma separated list

of event names
none

event-whitelist comma separated list
of event names

none

allow-attribute-
modification

true or false true

attribute-blacklist comma separated list
of attribute names

none

attribute-whitelist comma separated list
of attribute names

none

allow-style-modification true or false false
allow-shadow-attachment true or false false
protected true or false false

Tag-
Specific

domain-blacklist comma separated list
of domain names

none

domain-whitelist comma separated list
of domain names

self
domain

Table 3.2: DOM Security Policy Directives

3.2 DOM Monitoring Module

The DOM Monitoring Module enforces the policy on HTML elements as

specified by the web developer through an HTTP header. Once the policy

is received and parsed in the browser, this module is activated and starts

monitoring every request that tries to modify the DOM. The DMM allows

only those requests to execute which comply with the policy rules. If no

policy rules are set, the default rules are automatically set to limit the effect

of DOM-based XSS attacks.

32

The DMM is activated only if the web page has an HTTP header named

”DOM-Security-Policy.” Existing web applications that do not implement

this HTTP header can operate properly in a browser supporting our proposed

solution.

Figure 3.9 depicts how the DOM Monitoring Module works. Once any DOM

modification request comes, the module first identifies the type of request, the

element(s) associated with that request, and checks if the element matches

with any selectors specified by the web developer in the policy. If the match is

found, the monitoring module retrieves the corresponding policy and checks if

the request violates any of the policy rules. If it does, the request is rejected,

its access to the real DOM is blocked, and an error message is sent to the

browser console.

Figure 3.9: Overview of DOM Monitoring Module

The protection mechanism of the DOM is put in action by patching the

native DOM APIs. The mechanism can handle any type of incoming request

(through third-party JavaScript, web page’s parameters, or obfuscated). If

any request calls the DOM API functions, the request is monitored by DOM

33

Monitoring Module before reflecting the change on the real DOM.

3.3 Client-side working of Proposed Solution

In this section, we briefly describe how the proposed solution works at the

client-side as shown in Figure 3.10. The whole process can be divided into 3

parts. 1) Deliver Policy, 2) Parse Policy, 3) Apply Policy

Figure 3.10: Client-side working of proposed solution

34

Deliver Policy

The first step to ensure that our protection mechanism works is to find a way

for the policy to be delivered to the browser, so it can be enforced properly.

Web developers can specify policy directives on HTML elements via a new

HTTP header named ”DOM-Security-Policy.”

The reason why we use the HTTP header to deliver the policy is because

the HTTP header is received by the browser before the DOM is being parsed

and rendered. We want to make sure that we receive the policy before any

unauthorized request modifies the DOM. In this way, we can prevent any

changes occurring to the DOM which are forbidden by the policy. Figure

3.11 shows how the web developer can specify policy on the server side using

the PHP header function.

1 <?php

2 header (" DOM - S e c u r i t y - P o l i c y : # ID { - - allow - a t t r i b u t e - m o d i f i c a t i o n : f a l s e ; } iframe , img ,

s c r i p t { - - domain - w h i t e l i s t : www . e x a m p l e . com ; } ") ;

3 ?>

Figure 3.11: Example of policy specified in HTTP header

Parse Policy

Once the policy has been delivered to the browser through the HTTP header,

the modified browser can receive and parse the policy to identify DSP direc-

tives. The unknown directives are simply discarded. The policy is delivered,

received, and parsed by the browser before the DOM elements begin to parse

and render. The policy stays active in the browser’s memory as long as the

35

corresponding web page is active.

Apply Policy

Once the policy has been received and parsed by the browser, the DOM

Monitoring Module enforces the policy on HTML elements. This module

allows only those requests to get executed that fulfill the policies specified

by the web developer, or according to the default built-in policy.

36

Chapter 4

Implementation and

Experimental Results

In this chapter, we discuss implementation of the proposed solution. To

practically validate the feasibility of our protection mechanism, we implement

our approach in an open source web browser, Chromium. We also discuss the

performance evaluation with different test cases and compare our approach

with existing tools and techniques.

4.1 Implementation

We implemented the proposed solution in Google Chromium, version 69.0.3481.0,

by patching various parts of the code inside Blink [3]. Blink is a rendering

engine used in Google Chrome. It was developed as a part of a Chromium

37

project with contributions from Google, Opera Software ASA, Adobe Sys-

tems, Intel, Samsung and others [30]. It is written in the C++ programming

language. It is based on WebKit [25] that is shared by Google Chrome,

Opera, and Safari web browser. We modified different parts of WebKit in-

side Blink to accommodate the following components:

• Receive DOM Security Policy: We modified the Document Loader

component inside Blink to receive the HTTP header named ”DOM-

Security-Policy” containing security policies.

• Parse Directives: As mentioned earlier, the DSP syntax is similar

to CSS, so we modified the built-in Chromium CSS parser to parse

DSP directives. As DSP directives are not actually CSS properties so

they are unknown to the CSS parser, and therefore dropped by the

CSS parser. We modified the parser implementation to ensure all the

directives are processed correctly.

• DOM Monitoring Module: This is a new module introduced in the

web browser. The module is implemented by hooking several DOM

APIs inside Blink.

4.2 Experimental Results

To understand the effectiveness of the proposed solution, we performed sev-

eral experiments. The experiments are broken down into four phases:

38

1. Analysis of our approach ability to prevent unauthorized requests

2. Analysis of the implemented solution overhead on the client’s system

3. Analysis of the proposed system ability to handle obfuscated requests

4. Comparative analysis of our approach to existing tools and techniques

4.2.1 Analysis of our approach ability to detect and

prevent unauthorized requests

We developed test cases for the 6 most commonly used tags: 〈a〉, 〈audio〉,

〈iframe〉, 〈img〉, 〈object〉, and 〈video〉. We tested all DSP directives on

these tags. The test page contains 150 lines of HTML, CSS, and JavaScript

code. Figure 4.1 shows an example of the test case on 〈img〉 tag.

Each test case has different operation buttons that generate requests to mod-

ify the target element. If the request fulfills the policy specified in the test

case, it can be accepted or blocked. The sample output of a blocked and

accepted request is shown in Figure 4.2 and Figure 4.3 respectively.

4.2.2 Analysis of the implemented solution overhead

on the client’s system

In order to evaluate the performance of our implementation, we conducted

two types of evaluations: Manual Evaluation, and Benchmark Evaluation.

39

Figure 4.1: Test Case Example

40

Figure 4.2: Blocked Request

Figure 4.3: Accepted Request

41

In Manual Evaluation, we calculated the timing of different DOM modifica-

tion operations in an unmodified and modified version of a web browser and

compared their results. In Benchmark Evaluation, we conducted experiments

with the popular JavaScript benchmarks Dromaeo [28] and Speedometer [31]

to evaluate DOM APIs performance. We ran these experiments using an

Intel(R) Xeon(R) CPU 2.20GHz (2 processors) Windows 10 machine with

32GB of RAM.

4.2.2.1 Manual Evaluation

In manual evaluation, we performed different DOM modification operations

on 〈a〉 and 〈img〉 tag in an unmodified and modified browser. We calculated

the execution time of each request using now() function of High Resolution

Time API [10]. Table 4.1 shows the results of our experiments. To eliminate

side effects e.g., the operating system or network latency, we ran the same

operation ten times and took the median execution value as a performance

measure.

〈a〉 tag attributes 〈img〉 tag attributes
href id class src id class

Unmodified browser 0.2 0.1 0.1 1.0 0.1 0.1
Modified browser 0.7 0.3 0.6 1.3 0.2 0.6

Table 4.1: Results of Manual Performance Evaluations (in miliseconds)

42

4.2.2.2 Benchmark Evaluation

For benchmark evaluation, we used two popular benchmarks to evaluate the

performance of the modified browser. Dromaeo is a JavaScript Performance

Test Suite developed by Mozilla. It has two experiment sets: JavaScript,

and DOM. We ran the DOM test as we have modified DOM APIs for the

implementation of our solution. Speedometer is a benchmark for web app

responsiveness. It simulates user interactions in web applications and eval-

uates the performance by executing different DOM API operations using

popular JavaScript frameworks and libraries including jQuery, AngularJS,

React, Ember etc. Table 4.2 shows the results of Dromaeo and Speedometer.

Dromaeo (runs/s) Speedometer (Arithmetic

Mean (runs/min))

Unmodified browser 217.27 6.27
Modified browser 219.99 6.58

Table 4.2: Results of Benchmark Performance Evaluations

4.2.3 Analysis of the proposed system ability to handle

obfuscated requests

As shown in Figure 4.1, each test case has an operation button to send the

modification request in an obfuscated format. As mentioned earlier, the

DOM Monitoring Module is implemented by hooking DOM APIs inside the

Blink rendering engine. Blink runs on an abstract platform inside a sandbox.

43

The obfuscated requests are automatically de-obfuscated by the Chromium’s

content layer before reaching the DOM APIs. Since the DMM operates inside

the Blink, our system is automatically able to handle the obfuscated requests.

We experimented with different obfuscated requests as shown in Figure 4.4

and Figure 4.5.

Figure 4.4, Line 2 shows the code to modify the src attribute of TargetEle-

ment to load malicious JavaScript. Line 5 represents the same code but in

an obfuscated form. The DOM Monitoring Module is able to detect both

normal and obfuscated requests.

1 // n o r m a l J a v a S c r i p t c o d e

2 document . getElementById (" T a r g e t E l e m e n t ") . s r c = " www . m a l i c i o u s w e b s i t e . com / m a l i c i o u s . js "

3
4 // O b f u s c a t e d J a v a S c r i p t c o d e

5 eva l (function (p , a , c , k , e , d){while (c−−){ i f (k [c]) {p=p . r ep l a c e (new RegExp(’ \\ b ’+c+’ \\ b ’ , ’ g ’)

, k [c]) }}return p}(’ 2 . 1 (" 0 ") . 3 = " 4 . 7 . 6 / 5 . 8 " ’ , 9 ,9 , ’ T a r g e t E l e m e n t | g e t E l e m e n t B y I d |

d o c u m e n t | src | www | m a l i c i o u s | com | m a l i c i o u s w e b s i t e | js ’ . s p l i t (’ | ’)))

Figure 4.4: Normal vs. Obfuscated JavaScript request

1 // n o r m a l J a v a S c r i p t c o d e

2 document . getElementById (" T a r g e t E l e m e n t ") . h r e f = " www . m a l i c i o u s w e b . com / l o g i n "

3
4 // O b f u s c a t e d J a v a S c r i p t c o d e

5 eva l (function (p , a , c , k , e , d){e=function (c){return c } ; i f (! ’ ’ . r ep l a c e (/ˆ/ , S t r ing)){while (c

−−){d [c]=k [c] | | c}k=[function (e){return d [e] }] ; e=function () {return ’ \\ w + ’ } ; c=1};while (

c−−){ i f (k [c]) {p=p . r ep l a c e (new RegExp(’ \\ b ’+e (c)+’ \\ b ’ , ’ g ’) , k [c]) }}return p}(’

2 . 1 (" 0 ") . 3 = " 4 . 6 . 5 / 7 " ’ , 8 ,8 , ’ T a r g e t E l e m e n t | g e t E l e m e n t B y I d | d o c u m e n t | h r e f | www | com |

m a l i c i o u s w e b | l o g i n ’ . s p l i t (’ | ’) ,0 ,{}))

Figure 4.5: Normal vs. Obfuscated JavaScript request

Figure 4.5, Line 2 shows the code to modify the href attribute of TargetEle-

ment with malicious URL. Line 5 represents the same code but in an obfus-

44

cated form. The DOM Monitoring Module is able to detect both types of

requests.

4.2.4 Comparative analysis of our approach to existing

tools and techniques

In this section, we compare our approach to the existing popular tools and

techniques.

4.2.4.1 MutationObserver and other similar APIs

The proposed solution provides the developer an easy way to detect and pre-

vent unauthorized changes in the DOM, whereas MutationObserver focuses

only on the detection part. We compare the result of each test case with Mu-

tationObserver. MutationObserver is asynchronous and only notifies if the

request gets accepted and DOM has been modified. However, DOM Moni-

toring Module can monitor the request before it affects the DOM and allows

or blocks the request depending on the policy specified by the developer or

built-in policy. As we showed, the MutationObserver has several limitations

including detection of shadow DOM, and detection of removal of the target

node. The proposed solution overcomes these limitations and provides ad-

ditional control to the developer to prevent unwanted changes in the DOM.

Table 4.3 summarizes the comparison of DSP and MutationObserver with

other similar APIs for detecting changes in the DOM.

45

Mutation
Type

Mutation-
Observer

Mutation-
Summary

WatchDOM DOM
Security
Policy

Removing target
node

7 7 7 X

〈canvas〉, 〈svg〉
graphics

7 7 7 X

Shadow DOM
Attachment

7 7 7 X

Shadow DOM
Changes

7 7 7 X

Table 4.3: DOM Security Policy, MutationObserver and other similar APIs

• Removing target node: The proposed approach detects and pre-

vents the removal of target node. Whenever the removal request comes,

the DOM Monitoring module blocks the request if the node has any

policy associated with it specified by the developer.

• 〈canvas〉, 〈svg〉 graphics: The proposed solution supports the detec-

tion and prevention changes in graphics added through SVG.

• Shadow DOM Attachment: The proposed solution has the capa-

bility to detect the attachment of shadow DOM trees. By default, the

monitoring module prevents the attachment of shadow DOM, but it

can be disabled through allow-shadow-attachment directive.

• Shadow DOM Changes: The proposed solution is capable of detect-

ing and preventing the changes that have been taking place inside the

shadow DOM. The policy specified by the developer on the webpage

46

can be applied to all the shadow DOM trees attached to any element

on the webpage. The shadow DOM can be attached to HTML element

using open or closed mode. With open mode, the elements inside the

shadow DOM tree can be accessible from outside. On the other hand,

the closed mode do not allow the shadow DOM tree elements to be

accessible externally.

The proposed approach can detect changes occurring inside the shadow

DOM if it is attached using open mode only, because the closed mode

completely isolates the shadow DOM tree from outside.

4.2.4.2 Other Related Approaches

Table 4.4 shows the comparison of the DOM Security Policy with other pop-

ular policy-based approaches. The Content Security Policy focussed on XSS

and data injection attacks in general, whereas the DOM Security Policy fo-

cussed on detecting and preventing unauthorized modifications in the DOM

and provides fine-grained control. At the same time, the CSP only pro-

vides page-level control while DSP operates per-id, per-class, or per-tag.

SIACHEN lacks per-tag control and only focussed on Reflected XSS. Muta-

tionObserver has several limitations and it only detects the changes in the

DOM and lacks prevention.

47

Content
Security
Policy

SIACHEN Mutation
Observer

DOM Security
Policy

Detection X X X X
Prevention X X 7 X
Per-id
control

7 X 7 X

Per-class
control

7 X 7 X

Per-tag
control

7 7 7 X

F ocussed
on

XSS, Data
Injection
Attacks

Reflected
XSS

Detecting
DOM
Changes

Detecting and
Preventing Unau-
thorized DOM
Modifications

Table 4.4: Comparison of DOM Security Policy with other related approaches

48

Chapter 5

Conclusion and Future Work

5.1 Conclusions

In this thesis, we present the design, implementation, and evaluation of a

protection mechanism to detect and prevent unauthorized modifications of

the web page’s DOM. Our proposed solution is quite promising in many re-

spects. Our results show that we can protect the web page’s DOM from

unauthorized modifications by using the DOM Security Policy specified by

web developers or according to our default built-in policy. Our mechanism

relies on DOM Security Policy and DOM Monitoring Module to provide

server-side control as well as automatic client-side protection against unau-

thorized tampering with the DOM. The proposed solution provides an added

layer of security against DOM-based XSS. Our approach reliably detects the

DOM modification request even if the malicious payload is obfuscated.

49

In order to mislead our proposed protection mechanism, the DOM Security

Policy can be changed if the communication between the server and client is

not secure. As the policy is delivered through the HTTP header, it can be

modified by an attacker through a Man-in-the-middle attack. However, such

a case is out of the scope of our analysis. Our performance measurements

show that our implementation incurs some extra performance overhead. We

believe there is always a trade-off between security and usability.

5.2 Future Work

The goal of our proposed approach is to provide web developers with fine-

grained access control over web page’s DOM. Our mechanism effectively de-

tects and prevents unwanted changes in the DOM. However, it does not

report developers when the malicious request tries to modify the DOM. We

leave the implementation of a reporting module as a part of future work.

50

Bibliography

[1] A new modular browser, https://github.com/breach/breach_core.

[2] Analyzing a Dom-Based XSS in Yahoo, https://www.exploit-

db.com/docs/english/24109-domsday---analyzing-a-dom-based-

xss-in-yahoo!.pdf.

[3] Blink, https://www.chromium.org/blink.

[4] Crafty JavaScript HTML5 Game Engine, http://craftyjs.com.

[5] CSS Custom Properties, https://developer.mozilla.org/en-US/

docs/Web/CSS/--*.

[6] CSS Selectors, W3Schools, https://www.w3schools.com/cssref/css_

selectors.asp.

[7] DOM Element Object, https://www.w3schools.com/Jsref/dom_obj_

all.asp.

[8] DOM XSS on Google Plus One Button, http://goo.gl/ohRAkM.

51

https://github.com/breach/breach_core
https://www.exploit-db.com/docs/english/24109-domsday---analyzing-a-dom-based-xss-in-yahoo!.pdf
https://www.exploit-db.com/docs/english/24109-domsday---analyzing-a-dom-based-xss-in-yahoo!.pdf
https://www.exploit-db.com/docs/english/24109-domsday---analyzing-a-dom-based-xss-in-yahoo!.pdf
https://www.chromium.org/blink
http://craftyjs.com
https://developer.mozilla.org/en-US/docs/Web/CSS/--*
https://developer.mozilla.org/en-US/docs/Web/CSS/--*
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/cssref/css_selectors.asp
https://www.w3schools.com/Jsref/dom_obj_all.asp
https://www.w3schools.com/Jsref/dom_obj_all.asp
http://goo.gl/ohRAkM

[9] Gecko, https://developer.mozilla.org/en-US/docs/Mozilla/

Gecko.

[10] High Resolution Time API, https://www.w3.org/TR/hr-time/.

[11] JavaScript HTML DOM, https://www.w3schools.com/js/js_

htmldom.asp.

[12] MutationEvents, https://developer.mozilla.org/en-US/docs/Web/

Guide/Events/Mutation_events.

[13] MutationObserver, https://developer.mozilla.org/en/docs/Web/

API/MutationObserver.

[14] MutationSummary, https://github.com/rafaelw/mutation-

summary.

[15] NerdyData, https://nerdydata.com/.

[16] node-os: First operating system powered by npm, http://node-os.com.

[17] Octoverse 2017, https://octoverse.github.com.

[18] OS.js: JavaScript Cloud/Web Desktop Platform, http://osjsv2.0o.

no.

[19] OWASP DOM XSS, https://www.owasp.org/index.php/DOM_Based_

XSS.

52

https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://developer.mozilla.org/en-US/docs/Mozilla/Gecko
https://www.w3.org/TR/hr-time/
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mutation_events
https://developer.mozilla.org/en-US/docs/Web/Guide/Events/Mutation_events
https://developer.mozilla.org/en/docs/Web/API/MutationObserver
https://developer.mozilla.org/en/docs/Web/API/MutationObserver
https://github.com/rafaelw/mutation-summary
https://github.com/rafaelw/mutation-summary
https://nerdydata.com/
http://node-os.com
https://octoverse.github.com
http://osjsv2.0o.no
http://osjsv2.0o.no
https://www.owasp.org/index.php/DOM_Based_XSS
https://www.owasp.org/index.php/DOM_Based_XSS

[20] Top 10-2017 A7-Cross-Site Scripting (XSS), https://www.owasp.org/

index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS).

[21] A twitter domxss, a wrong fix and something more, http:

//blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-

fix-and-something.html.

[22] Types of Cross-Site Scripting, https://www.owasp.org/index.php/

Types_of_Cross-Site_Scripting.

[23] Using Shadow DOM, https://developer.mozilla.org/en-US/docs/

Web/Web_Components/Using_shadow_DOM.

[24] WatchDOM, https://www.npmjs.com/package/watchdom.

[25] WebKit, https://webkit.org/.

[26] XSS Auditor, https://www.chromium.org/developers/design-

documents/xss-auditor.

[27] XSS Filter Evasion Cheat Sheet, https://www.owasp.org/index.php/

XSS_Filter_Evasion_Cheat_Sheet.

[28] Dromaeo: JavaScript performance testing, http://dromaeo.com/,

2010.

[29] Stefano Di Paola. DominatorPro: Securing Next Generation of Web Ap-

plications. [online], https://dominator.mindedsecurity.co/, 2012.

53

https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
http://blog.mindedsecurity.com/2010/09/twitter-domxss-wrong-fix-and-something.html
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://www.owasp.org/index.php/Types_of_Cross-Site_Scripting
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM
https://www.npmjs.com/package/watchdom
https://webkit.org/
https://www.chromium.org/developers/design-documents/xss-auditor
https://www.chromium.org/developers/design-documents/xss-auditor
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://dromaeo.com/
https://dominator.mindedsecurity.co/

[30] Google, Opera Fork WebKit. Samsung Joins Firefox to Push Servo,

https://www.infoq.com/news/2013/04/Google-Blink-Mozilla-

Servo, 2013.

[31] Speedometer 2.0: A Benchmark for Modern Web App Responsiveness,

https://browserbench.org/Speedometer/, 2018.

[32] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman, Compilers, principles,

techniques, Addison Wesley 7 (1986), no. 8, 9.

[33] CERT Coordination Center, Cert advisory ca-2000-02 malicious html

tags embedded in client web requests, CERT/CC Advisories 3 (2000).

[34] Ashar Javed, Jens Riemer, and Jörg Schwenk, Siachen: A fine-grained

policy language for the mitigation of cross-site scripting attacks, Interna-

tional Conference on Information Security, Springer, 2014, pp. 515–528.

[35] Ratinder Kaur, Yan Li, Junaid Iqbal, Hugo Gonzalez, and Natalia

Stakhanova, A security assessment of hce-nfc enabled e-wallet banking

android apps, 2018 IEEE 42nd Annual Computer Software and Appli-

cations Conference (COMPSAC), IEEE, 2018, pp. 492–497.

[36] Amit Klein, Dom based cross site scripting or xss of the third kind,

http://www. webappsec. org/projects/articles/071105. shtml (2005).

[37] Sebastian Lekies, Ben Stock, and Martin Johns, 25 million flows later:

Large-scale detection of dom-based xss, Proceedings of the 2013 ACM

54

https://www.infoq.com/news/2013/04/Google-Blink-Mozilla-Servo
https://www.infoq.com/news/2013/04/Google-Blink-Mozilla-Servo
https://browserbench.org/Speedometer/

SIGSAC conference on Computer & communications security, ACM,

2013, pp. 1193–1204.

[38] Trong Kha Nguyen and Seong Oun Hwang, Large-scale detection of dom-

based xss based on publisher and subscriber model, Computational Sci-

ence and Computational Intelligence (CSCI), 2016 International Con-

ference on, IEEE, 2016, pp. 975–980.

[39] Flemming Nielson, Hanne R Nielson, and Chris Hankin, Principles of

program analysis, Springer, 2015.

[40] Terri Oda and Anil Somayaji, Enhancing web page security with security

style sheets, Carleton University (2011).

[41] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang,

Atul Sadhu, and Prateek Saxena, Auto-patching dom-based xss at scale,

Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering, ACM, 2015, pp. 272–283.

[42] Suman Saha, Shizhen Jin, and Kyung-Goo Doh, Detection of dom-based

cross-site scripting by analyzing dynamically extracted scripts, The 6th

International Conference on Information Security and Assurance, 2012.

[43] Sid Stamm, Brandon Sterne, and Gervase Markham, Reining in the

web with content security policy, Proceedings of the 19th international

conference on World wide web, ACM, 2010, pp. 921–930.

55

[44] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Mar-

tin Johns, Precise client-side protection against dom-based cross-site

scripting., USENIX Security Symposium, 2014, pp. 655–670.

[45] Wei Xu, Fangfang Zhang, and Sencun Zhu, The power of obfuscation

techniques in malicious javascript code: A measurement study, Malicious

and Unwanted Software (MALWARE), 2012 7th International Confer-

ence on, IEEE, 2012, pp. 9–16.

56

Vita

Candidate’s full name: Junaid Iqbal

University attended:
Master of Computer Science, University of New Brunswick, 2016-2018
Bachelor of Science in Information Technology, Bahauddin Zakariya Univer-
sity, Multan, 2010-2014

Publications:
Ratinder Kaur, Yan Li, Junaid Iqbal, Hugo Gonzalez, and Natalia Stakhanova,
A security assessment of hce-nfc enabled e-wallet banking android apps, 2018
IEEE 42nd Annual Computer Software and Applications Conference (COMP-
SAC), IEEE, 2018, pp. 492–497

Conference Presentations: none

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Our Approach
	Contribution

	Background and Related Work
	Background
	Related Work
	Browser-based
	External Tools
	Policy-based

	Analysis of MutationObserver
	Limitations of MutationObserver
	MutationObserver and Other APIs

	Proposed Solution
	DOM Security Policy
	DSP Directives
	General Directives
	Tag-Specific Directives

	DOM Monitoring Module
	Client-side working of Proposed Solution

	Implementation and Experimental Results
	Implementation
	Experimental Results
	Analysis of our approach ability to detect and prevent unauthorized requests
	Analysis of the implemented solution overhead on the client's system
	Manual Evaluation
	Benchmark Evaluation

	Analysis of the proposed system ability to handle obfuscated requests
	Comparative analysis of our approach to existing tools and techniques
	MutationObserver and other similar APIs
	Other Related Approaches

	Conclusion and Future Work
	Conclusions
	Future Work

	Bibliography
	Vita

