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Abstract

This work examines cosmological perturbations in a Hamiltonian frame-

work with a matter-time gauge. Einstein’s field equations are written in a

matter-time gauge. The perturbed three-metric of cosmology, its conjugate

momentum and the shift are substituted in these equations. The equations

of motion of the perturbations to linear order are derived. These equations

are expanded in terms of spatial Fourier modes and are then decomposed

into scalar, vector and tensor components. After fixing gauges and solving

constraints we find that the scalar mode is ultralocal and that the vector

modes vanish. We also see that the traceless transverse tensor modes give

the known propagation equation for gravitational waves in an expanding,

spatially flat, homogeneous and isotropic background.
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Chapter 1

Introduction

Starting a 100-meter race is an event that happens somewhere in space

and at some time; it is a spacetime (or space-time) event. By extension

crossing the finish line for that race is also a spacetime event. The rule

for finding the distance between these two spacetime points is given by the

metric tensor gab. Therefore the metric contains information on the geometry

of spacetime. This rule for finding distances in spacetime depends on where

one is in space and on what time it is. The metric therefore depends on space

and time: gab(t, ~x).

Einstein’s general theory of relativity (GR) offers a geometrical expla-

nation of gravity. According to Einstein, the geometry of spacetime - and

therefore the metric tensor - can be linked to gravity. Thus gravity, like the

metric tensor, is dependent on both space and time. The second finding of

GR is best summarized by John Wheeler: “Spacetime tells matter how to
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move; matter tells spacetime how to curve” [5]. This is encapsulated in the

Einstein field equations:

Spacetime Geometry (g) = Matter-Energy Density (1.1)

where the left hand side is a function of the metric and the right hand side

contains information about matter. The metric and the matter have to be

solved for together. The remarkable result of the Einstein field equations is

then the metric for all space and time along with the dynamics of the matter

fields. The Einstein field equations are a set of ten coupled partial differential

equations which are generally - by their very nature - hard to solve.

GR is used to study many interesting physical systems and phenomena

such as black holes, the perihilion shift in the orbit of Mercury and the

large-scale universe1. The universe has a spacetime and matter that we can

observe. However we can only observe the part of the universe from which we

have received light. We use GR to investigate beyond what is observed and

- for example - chart the full history of the universe and predict its fate. To

our advantage, using GR to study the universe is simplified by symmetries

present in the universe on large scales. Since the time of Copernicus, it has

been common to presuppose that we are not in a special position in the

large-scale universe: that if we were located somewhere else our observations

would be unchanged [10]. This is called homogeneity and it implies that

1In this thesis, “large-scales” indicate distances of 100 million light years.
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the matter densities and the expansion of the universe are not dependent on

position. It was also commonly presupposed that there is no special direction

in the universe: that our observations about the universe in the î direction

are not different from those in the k̂ direction2. This is called isotropy. These

symmetries greatly simplify the task of using GR to study the universe.

However just like there are small ripples on a pond, there exist fluctuations

to the homogeneous and isotropic universe. For example, different points

in the universe have different expansion rates and every direction does not

stretch equally fast. Therefore the small ripples are not homogeneous and

isotropic. One may re-express the total expansion in terms of a background

and a perturbation:

m = m(0) +m(1) (1.2)

where m is the full quantity, m(0) is the background quantity and m(1) is the

perturbation. The procedure of breaking up a quantity as such, finding the

equations of motion for the background and then studying the behavior of the

perturbations on these background solutions is called perturbation theory.

In cosmological perturbation theory, the cosmological spacetime is broken

into a background (which is homogeneous and isotropic) and perturbations

(which are non-homogeneous and non-isotropic). Similarly the matter fields

in the universe are also broken into backgrounds and fluctuations. The space-

time and matter fields are then substituted in the Einstein field equations

2(̂i, ĵ, k̂) are the basis vectors in Cartesian coordinates

3



and the perturbed equations to linear order are derived. The standard pro-

cedure for doing so has some well-known results, one of which is related to

the propagation of gravitational waves.

This thesis explores cosmological perturbation theory in a Hamiltonian

framework with time being represented by a matter field. It is checked that

this alternative framework gives known results about the propagation of grav-

itational waves.

In Chapter 2 we start by writing the Einstein equations. Then we find that

in the absence of matter, a flat spacetime is the simplest solution to these

equations. Following that we study perturbations on this solution. We find

two functions in the metric perturbations that propagate as waves. These

are gravitational waves in flat spacetime.

In Chapter 3 we review the standard method that is used to study cos-

mological perturbation theory. The metric and matter are defined in terms

of backgrounds and perturbations. The perturbations are then classified ac-

cording to how they respond to rotations in Fourier space. For each class

of perturbations the corresponding metric and matter terms are substituted

in the Einstein field equations and the perturbation equations at linear or-

der are studied. We find that the dynamics of one class of perturbations

represent the propagating gravitational waves in the universe.

In Chapter 4 the alternative framework for studying cosmological pertur-

bation theory is set up. We consider a system of gravity with a dust field

and derive its Hamiltonian formulation. Following that we equate the dust

4



field to time. The resultant equations of motion become the framework to

study perturbation theory in GR.

In Chapter 5 we study cosmological perturbation theory in the new frame-

work. The perturbed cosmological spatial metric and its conjugate momen-

tum are used as inputs. The perturbation equations to linear order are

classified based on how they respond to rotations in spatial Fourier space.

It is noted that the dynamics of one class of perturbations represents the

propagating gravitational waves.

Chapter 6 provides a summary and some concluding remarks to the thesis.
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Chapter 2

General Relativity and

Perturbation Theory

In this chapter first we review Einstein’s equations that relate the geom-

etry of spacetime to matter. In Section 2.2 we check that a flat spacetime

- the Minkowski metric - is the simplest solution to the Einstein equations

in the absence of matter. In Section 2.4 we introduce perturbations to this

background solution and expand the Einstein equations to linear order in the

perturbations. We use two different routes to study the perturbation equa-

tions [2][7][10][19]. Through both routes we get two degrees of freedom in

the metric perturbation that propagate as waves. These are the gravitational

waves.

6



2.1 Einstein Field Equations

The Einstein equations relate the geometry of spacetime to matter. The

geometry of spacetime is represented by the metric gab(t, ~x) which is a sym-

metric tensor1. Recall that spacetime is curved by matter. However, to find

how each individual matter particle - in (for example) clusters of galaxies or

inside of a black hole - affects spacetime is tedious. It is much more sensible

to check how matter as a whole entity affects spacetime. Therefore we use a

matter distribution instead. We denote this by M and this is also a function

of space and time. The dynamical variables in GR are therefore gab and M .

The Einstein equations are2:

Gab = 8πGTab. (2.1)

1. The right hand side of the Einstein equation has the stress-energy ten-

sor Tab. It is a symmetric tensor that encodes the energy-representing

quantities of the matter distribution M . The form of the stress-energy

tensor is determined by the matter distribution it represents. For ex-

ample if there is no matter then the stress-energy tensor is zero:

Tab = 0. (2.2)

1The inverse metric is denoted by gab and it satisfies the relation gabgbc = δac , where
δac is the Kronecker delta. The metric and its inverse are used to lower and raise indices
on tensors.

2G is Newton’s gravitational constant. G = 6.67× 10−11m3kg−1s−2.
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The stress-energy tensor can be used to represent a matter distribution

that behaves like a perfect fluid. A perfect fluid is one that can be

completely specified by its rest-frame four velocity ua, energy density

ρ and pressure p3,4 [2] [10]. The pressure of the perfect fluid is the

same in all directions. We explain such a pressure through an example.

Consider water - a perfect fluid - at rest in a plastic bottle. We note

that the pressure the water exerts on the bottle can be given by the

interactions of water molecules with the surface of the bottle5. Since

we do not notice bulging of the bottle surface in any preferred direction

we can conclude that the pressure exerted by the water is the same in

all directions. If a matter distribution behaves like a perfect fluid then

we can express M in terms of its rest frame four-velocity ua, energy

density ρ and pressure p. Its stress-energy tensor is:

Tab = (ρ+ p)uaub + pgab. (2.3)

The stress-energy tensor represents energy and momentum of the sys-

tem. Therefore it should follow the conservation law that in an in-

finitesimal volume, changes in energy are entirely dependent on the

3The four vector representing position in spacetime is: xa = [t, ~x]T , where ~x is the
position vector in space. The superscript T represents the transpose of the quantity.
Therefore xa is a column vector. The four velocity is ua = [1, ~v]T where ~v is the three-
velocity.

4A rest-frame is one in which the fluid has no three-velocity ~v.
5Similarly the pressure a matter distribution exerts on a surface is given by the inter-

actions of its composite particles with that surface.
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flow of energy in and out of that volume. Associated with the energy

is a density ρ. We can represent the movement of energy as a current

~J . The change in energy because of its movement through the volume

element is given by
∮
~J. ~dS where ~dS is an infinitesimal surface area

element. Consequently we can write the equation:

∮
~J · d~S +

d

dt

∫
ρdV = 0 (2.4)

where V represents the volume. The above in differential form is6:

Figure 2.1: Flow of Energy through a Cube. [7]

J i,i + ρ̇ = 0. (2.5)

6A comma represents a partial derivative. Consider the function F (t, x, y, z). F,x

represents the partial derivative of that function with respect to x. We can also indicate
this as ∂xF .
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This is the conservation law in mathematical form and this equation is

called the continuity equation. To generalize this to the stress-energy

tensor in curved spacetime we write:

∇aTab = 0 (2.6)

where ∇a is the covariant derivative and its action on an arbitrary

tensor Sbc is defined as7:

∇aS
b
c = Sbc,a + ΓbaeS

e
c − ΓeacS

b
e (2.7)

where Γabc are the Christoffel symbols. They are prescribed as:

Γabc =
gad

2
[gdb,c + gcb,d − gbc,d]. (2.8)

Therefore equation (2.6) is the continuity equation for the stress-energy

tensor generalized to a curved spacetime.

2. The left hand side of equation (2.1) has the Einstein tensor and it

encodes information on how spacetime is curved. The Einstein tensor

is prescribed as:

Gab = Rab −
Rgab

2
(2.9)

7It is worth noting that the covariant derivative of Sb
c is not the same as the covariant

derivative of Sbc.

10



where Rab is the Ricci curvature tensor and R is its trace8. The Ricci

tensor is prescribed as:

Rab = Γcab,c − Γcca,b + ΓfabΓ
c
cf − ΓfacΓ

c
bf . (2.10)

Since Rab contains information on how spacetime is curved we can use it

for the left hand side of the Einstein equations. However the contracted

Bianchi identities:

∇aRab =
∇bR

2
(2.11)

indicate that the covariant divergence of the Ricci tensor is not zero9.

Recall that the stress-energy tensor has zero covariant divergence. Hence

the Einstein equations will be inconsistent if we use the Ricci tensor

for the left hand side. We rearrange the contracted Bianchi identities

in equation (2.11) to get:

∇a(Rab −
gabR

2
) = 0. (2.12)

The quantity in brackets is the Einstein tensor and it has zero covariant

divergence. The Einstein equations are now consistent.

The Einstein tensor encodes information on the curvature of spacetime,

contains second order partial derivatives of the metric, has a vanishing

8The trace of the Ricci tensor is calculated by raising one index with the inverse metric
gab. Therefore R = gabRab.

9Covariant divergence is the generalization of ordinary divergence to curved spacetime.
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covariant divergence and is symmetric. It goes on the left hand side of

the Einstein equations.

It may seem that the Einstein equations are a set of ten partial differen-

tial equations. This is because the tensors Gab and Tab are symmetric 4× 4

tensors. However the conservation law accounts for four differential identi-

ties. Therefore there are actually 10− 4 = 6 independent partial differential

equations.

2.2 Simplest Solution to Einstein’s Equations

In this section we solve the Einstein equations to find the simplest metric

that corresponds to a system without matter. Absence of matter corresponds

to Tab = 0. Therefore the Einstein equations simplify to:

Gab = 0. (2.13)

If Gab equals zero then so should its trace G. It can be checked that in

general:

G = −R. (2.14)

Therefore the trace of the Ricci tensor is also zero. Consequently the Einstein

equations are:

Rab = 0. (2.15)

12



We recall that the Ricci tensor is a function of the Christoffel symbols which

contain first order partial derivatives of the metric. The simplest way for the

Ricci tensor to equal zero is if the metric functions were all constants. This

is a solution. We further note that a physically meaningful solution is the

Minkowski metric, which in (t, x, y, z) coordinates is:

ηab =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (2.16)

It is physically meaningful because it is the metric for flat spacetime which

corresponds to an absence of gravity. The interval between two points in a

flat spacetime expressed in (t, x, y, z) coordinates is:

ds2 = −dt2 + eabdx
adxb (2.17)

where eab is the Euclidean metric. In Cartesian coordinates the Euclidean

metric is the identity matrix.

Therefore the simplest, physically meaningful solution of the Einstein

equation for a system without matter is a flat spacetime.

13



2.3 Perturbation Theory

Perturbation theory is the study of small fluctuations on a background

solution10. We consider the analogy of ripples on a pond. We first liken

the surface of the pond as the background solution. We then perturb the

background solution by creating ripples on the surface. The study of these

ripples is perturbation theory. In this thesis we will study perturbations to

the background solutions in GR.

The first step in perturbation theory is to break the quantity of interest in

a background quantity and a perturbation. For example we break the metric

as:

gab = g
(0)
ab + g

(1)
ab (2.18)

where gab is the full metric, g
(0)
ab is the background metric and g

(1)
ab represents

the perturbation to that background. We also break the stress-energy ten-

sor in a similar way. Next we substitute the full quantity in the Einstein

equations and retain terms up to first order in the perturbations. In this

chapter we use this setup to study weak gravitational fields on a Minkowski

background.

10The background solution will be alternatively called the steady-state solution.
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2.4 Weak Gravitational Fields on Minkowski

Background

2.4.1 Calculating the Einstein Equations

A weak gravitational field on a flat spacetime is represented by a metric

that is nearly Minkowski [7] [10]11:

gab(t, ~x) = ηab + hab(t, ~x) (2.19)

where hab is “small” such that we ignore all terms that are second order and

beyond. A weak gravitational field on flat spacetime is a good approximation

to gravity far away from black holes and stars. In this section we assume that

there are no fields that source gravity. To that effect we set the stress-energy

tensor to zero:

Tab = 0. (2.20)

We checked in the last section that the Minkowski metric is a solution to

the Einstein equations in the absence of matter. Now we will substitute the

full metric in the Einstein equations and retain terms till linear order in the

perturbations. We derive the Christoffel symbols to be:

Γabc =
ηad

2
(hcd,b + hbd,c − hbc,d). (2.21)

11We are working in (t, x, y, z) coordinates.

15



The Ricci tensor is:

Rab = hc(a,b)c −
�hab

2
− h,ab

2
(2.22)

where h is the trace of the perturbation and � is the d’Alembertian or the

wave operator which in Cartesian coordinates is:

� = ∂a∂a = −∂2
t + ∂2

x + ∂2
y + ∂2

z . (2.23)

We next calculate the Einstein tensor:

Gab = hc(a,b)c −
�hab

2
− h,ab

2
−
ηabh

cd
,cd

2
+
ηab�h

2
. (2.24)

To express the Einstein tensor in a simpler algebraic form we define h̄ab

[7]:

h̄ab = hab −
ηabh

2
. (2.25)

We call h̄ab the trace-reverse of hab based on the observation that:

h̄ = −h (2.26)

where h̄ is the trace of h̄ab. Following the re-expression of hab in terms of its

trace-reverse the Einstein tensor in equation (2.24) becomes:

Gab = h̄c(a,b)c −
�h̄ab

2
−
ηabh̄

cd
,cd

2
(2.27)

16



and we note that the algebraic form is much simpler.

2.4.2 Gauge Freedom in the Theory

We are free to choose a coordinate system to represent the metric. If

we change coordinates the metric components change. However physical

laws are not dependent on coordinates and hence do not change under a

coordinate transformation. This coordinate transformation is called a gauge

transformation. The freedom to choose a coordinate frame is called gauge

freedom and specifying a coordinate system corresponds to fixing a gauge.

We now investigate how the metric perturbations change under a gauge

transformation. We specify that the change in coordinates is generated by a

small vector ξa(xb) as:

xa
′
= xa − ξa(xb) (2.28)

where xa
′
is the new coordinate system, xa is the old one and “small” implies

that terms higher than linear order in ξa should be ignored. We derive the

transformation matrix:

λa
′

b =
∂xa

′

∂xb

= δab − ξa,b
(2.29)

where δab is the Kronecker delta. The matrix for the inverse transformation

is given by the relation:

λc
′

b λ
a
c′ = δab (2.30)

17



and we find that to be:

λab′ = δab + ξa,b (2.31)

where we have ignored all terms beyond the first order in ξa. We check how

the metric changes under this change in coordinates:

ga′b′ = λca′λ
d
b′gcd

g?ab = (δca + ξc,a)(δ
d
b + ξd,b)gcd

(2.32)

where ? means that the metric is expressed in the new coordinate system.

To first order, the coordinate change induces the following transformations:

1. The perturbation hab transforms as:

h?ab = hab + 2ξ(a,b). (2.33)

2. The same for the trace of the perturbation is:

h? = h+ 2ξc,c. (2.34)

3. Finally, the trace-reversed perturbation transforms as:

h̄?ab = h̄ab + 2ξ(a,b) − ξc,cηab. (2.35)

Under the coordinate transformation generated by ξa(xb) we notice that

18



the Einstein tensor stays the same i.e:

G?
ab = Gab. (2.36)

This implies that the infinitesimal change in coordinate transformation gen-

erated by ξa did not change the curvature of spacetime. This is what we

expected and it served as a check on our gauge-transformed metric perturba-

tion. We conclude that h̄?ab and h̄ab (and also the pair of h?ab and hab) describe

the same physical perturbation because they lead to the same curvature.

From here we will proceed forward using two distinct routes. For the first

route we will decompose the metric perturbations into different components,

fix a gauge and then solve the equations [2]12. In the second route we will start

with equation (2.27), fix a gauge and solve the Einstein equations [7][10][19].

2.4.3 Route 1: Decomposition of Perturbations

The starting point for this route is the realization that the metric per-

turbation can be broken into components [2]. We start by writing the full

line-element:

ds2 = (ηab + hab)dx
adxb. (2.37)

12The gauge transformation is generated by the vector ξa; consequently specifying ξa

corresponds to fixing the gauge.

19



We expand the perturbation part of the line-element as:

habdx
adxb = −h00dt

2 + 2h0idtdx
i + hijdx

idxj (2.38)

and note that h00 is a scalar, h0i is a three-vector and hij is a three-tensor13.

The three-tensor hij is a 3 × 3 matrix that can be further decomposed into

a trace and trace-free part:

hij = 2(sij − ψeij) (2.39)

where sij is the traceless part, eij is the Euclidean metric (and the trace part

of the perturbation) and ψ is a function of spacetime. It can be checked that:

ψ = −h
6

(2.40)

where h is the trace of hij. We denote the different components of the full

perturbation hab as:

h00 = −2φ. (2.41)

This is one degree of freedom.

h0i = wi. (2.42)

13In the remaining sections of Chapter 2 and Chapter 3, we denote spacetime indices
with the Latin alphabet from the beginning i.e a, b, c.. and spatial indices with the Latin
alphabet from the middle i, j, k... This is done to be consistent with the corresponding
treatments in the literature mentioned. In Chapters 4 and 5 we will revert back to the
abstract index notation [10].
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These are three degrees of freedom.

hij = 2(sij − ψeij) (2.43)

where sij has five degrees of freedom and ψ accounts for one. The line element

is:

ds2 = −(1 + 2φ)dt2 + 2widtdx
i + [(1− 2ψ)eij + 2sij]dx

idxj. (2.44)

We proceed by finding different components of the Einstein tensor which is

given in equation (2.24). We state the results for the different components14:

G00 = 2∇2ψ + skl,kl

G0i = −1

2
∇2wi +

1

2
wk,ik + 2ψ̇,i + ṡki,k

Gij = (eij∇2 − ∂i∂j)(φ− ψ) + eijẇ
k
,k − ẇ(i,j) + 2eijψ̈ −�sij + 2sk(i,j)k − eijskl,kl.

(2.45)

We now check how the different metric functions change under a gauge

transformation. Under the gauge transformation generated by ξa the metric

perturbation transforms as given in equation (2.33). We substitute for the

different components of the metric perturbation to get the following trans-

14Note that a dot indicates a partial derivative with respect to time
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formation properties:

φ? = φ+ 2ξ̇0

w?i = wi + ξ0,i + ξ̇i

ψ? = ψ −
ξk,k
3

s?ij = sij + ξ(i,j) −
ξk,k
3
eij.

(2.46)

Now we pick a gauge to solve the Einstein equations. We chose the trans-

verse gauge in which we enforce that the divergences of w?i and s?ij vanish

i.e:

wi?,i = 0

si?j,i = 0.

(2.47)

We allow for wi,i 6= 0 and sij,i 6= 0 in the old coordinate system.

1. For the divergence of wi to vanish in the new coordinate system we

enforce:

∇2ξ0 = −wi,i − ξ̇i,i. (2.48)

This is one condition on ξa and it corresponds to the one restriction

wi,i = 0. Therefore there are two degrees of freedom in wi.

2. The same calculation for sij gives:

∇2ξj = −2sij,i −
ξk,jk
3
. (2.49)
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These are three conditions on ξa which correspond to the three restric-

tions sij,i = 0. The number of degrees of freedom in sij are reduced to

two.

The total number of functions in the metric therefore reduce to six.

In the transverse gauge the Einstein equations simplify15.

1. The Gtt equation becomes:

∇2ψ = 0. (2.50)

The equation above can be solved for ψ to give:

ψ = c1x+ c0 (2.51)

where c1 and c0 are constants of integration. We assume that the

functions in the metric are zero at ± infinity and with these boundary

conditions we get:

ψ = 0. (2.52)

There are five functions remaining in the metric.

2. The G0i equation is:

∇2wi = 0 (2.53)

which enforces wi = 0. The number of functions in the metric is three16.

15We no longer use the ? label.
16Recall wi has two functions in the transverse gauge.
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3. We now turn to the Gij equations. We first solve the trace of these

equations:

∇2φ = 0 (2.54)

which indicates that φ = 0. The metric has two degrees of freedom and

both of them are in sij.

4. The trace-free part of the Gij equations is:

�sij = 0. (2.55)

Therefore in the transverse gauge the remaining two degrees of freedom

in the traceless tensor part of the metric perturbation propagate as

waves.

We analyze our results for sij. First we write the solution for equation

(2.55):

sij = Xije
ikcxc (2.56)

where kc is the wave vector: kc = [ω,~k] with ω representing the frequency of

the wave and ~k representing the three wave vector. eikcx
c

is a plane wave and

Xij is its complex constant matrix. We substitute the solution in equation

(2.55) to get:

kck
csij = 0. (2.57)

This implies that ka is a null vector. This means that w2 = |~k|2. The
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transverse gauge condition, which is in equation (2.47), imposes that:

kis
i
j = 0. (2.58)

This implies that sij is transverse to the three wave vector (and hence the

motivation to call this gauge the transverse gauge). We now locate where

the remaining degrees of freedom lie. Recall that sij has no time components

and that it is symmetric:

sij =



0 0 0 0

0 s11 s12 s13

0 s12 s22 s23

0 s13 s23 s33


. (2.59)

Following that we invoke that the plane wave which sij represents is traveling

in the z direction. It has the wave vector ka = [k, 0, 0, k]T . Since sij is

transverse to the wave vector, we can write:

sij =



0 0 0 0

0 s11 s12 0

0 s12 s22 0

0 0 0 0


. (2.60)
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We lastly enforce that sij is traceless:

sij =



0 0 0 0

0 s11 s12 0

0 s12 −s11 0

0 0 0 0


. (2.61)

These remaining two degrees of freedom propagate as waves: these are grav-

itational waves.

2.4.4 Route 2: The Harmonic Gauge

In this route we start with equation (2.27). The Einstein equations are:

h̄c(a,b)c −
�h̄ab

2
−
ηabh̄

cd
,cd

2
= 0. (2.62)

If we can find a gauge in which:

h̄b?a,b = 0 (2.63)

then the Einstein equations in equation (2.62) reduce to a very simple form:

�h̄?ab = 0. (2.64)
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The equation above is significant from a physical standpoint because it indi-

cates that the components of the metric perturbation satisfy the wave equa-

tion and hence propagate as waves [7] [10] [19].

We now check if such a gauge exists. We recall the transformation equation

for the metric perturbation - i.e equation (2.35) - and take the divergence of

both sides to get:

h̄b?a,b = h̄ba,b + �ξa. (2.65)

We allow for h̄ba,b 6= 0 in the old coordinate system. Subsequently, if we want

a gauge in which h̄b?a,b = 0 then we should solve for ξa using the equation:

�ξa = −h̄ab,b . (2.66)

This is the wave equation with a source term and we can solve for ξa. After

solving for ξa we get the gauge condition in equation (2.63). This is called

the harmonic gauge or the Lorentz gauge and it represents a set of four

conditions on the metric perturbations. The Einstein equations simplify to

equation (2.64).

We now analyze the equations we have. We start by noting that any plane

wave will solve Einstein’s equation. We pick a solution:

h̄?ab(x
b) = Zabe

ikcxc (2.67)

where Zab is a complex constant matrix. We substitute the solution in the
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wave equation in equation (2.64) to get:

kck
ch̄?ab = 0. (2.68)

This implies that ka is a null vector. It enforces is w2 = |~k|2. Upon substi-

tuting the solution in the harmonic gauge in equation (2.63) we find:

kbh̄?ab = 0. (2.69)

This set of four conditions restrict the perturbation to be orthogonal (or

transverse) to the four wave vector.

We next check if there is more gauge-freedom in the theory. We start by

noting that the Lorentz gauge is equally possible if we add to ξa another

vector γa that satisfies:

�γa = 0. (2.70)

γa also satisfies the wave equation and we can specify a solution as:

γa = Y aeikcx
c

(2.71)

where Y a is a constant vector. That we can add ξa and γa indicates that the

Lorentz gauge is actually a class of gauges: that it represents not one, but

several gauges that satisfy equation (2.66) for ξa. It suggests that we have

more gauge freedom which we can use to put further restrictions on the per-
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turbation. We write the transformation equation for the metric perturbation

generated by γa17:

h̄?ab = h̄ab + 2γ(a,b) − γc,cηab. (2.72)

Because both h̄ab and γa satisfy the wave equation, we next rewrite the

above in terms of solutions of the wave equation given in equations (2.67)

and (2.71):

Z?
ab = Zab + 2ik(bYa) − iY ckcηab. (2.73)

We first look for a condition on γa that renders traceless, the metric pertur-

bation in the new coordinate system. This enforces the condition:

Y aka = −iZ
2

(2.74)

where Z is the trace of Zab
18. This is one condition on Y a and subsequently

on γa. We still have three more conditions we can enforce. We now enforce

that in the new coordinates, the metric perturbation should be orthogonal

to the timelike four velocity Ua of some observer. Equation (2.73) becomes:

0 = ZabU
a + 2iY(akb)U

a − iY ckcUb. (2.75)

It seems as if the equation above is indicative of four conditions (one for

17This is the same as equation (2.35) but with ξa replaced by γa
18We can also impose other conditions. For example we can set Z?

22 = 0. We impose
tracelessness because we saw in Route 1 that the propagating degrees of freedom were in
the traceless part of the metric perturbation
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each free index). We note that that is not necessarily the case: if we further

project using kb, we get zero. This implies we are in the three-dimensional

plane orthogonal to kb and one condition from equation (2.75) is redundant.

We have now used up all our gauge freedom and the conditions on the metric

perturbation are19:

h̄ = 0

Uah̄ab = 0.

(2.76)

We additionally note that in this gauge because the metric perturbation is

traceless:

h̄ab = hab. (2.77)

Now we will collect our results and analyze them. The total number

of degrees of freedom in the symmetric metric perturbation is ten and they

satisfy the wave equation (2.64). We write the symmetric metric perturbation

in matrix form as:

hab =



h00 h01 h02 h03

− h11 h12 h13

− − h22 h23

− − − h33


. (2.78)

The Lorentz gauge imposes that the metric perturbation is transverse to the

19We will not be using the ? superscript anymore.

30



four wave vector.

habk
b = 0. (2.79)

We choose the wave to travel in the z-direction i.e:

ka = [k, 0, 0, k]T . (2.80)

The metric perturbation becomes:

hab =



h00 h01 h02 −h00

− h11 h12 −h01

− − h22 −h02

− − − −h00


. (2.81)

We then impose that the metric perturbation is orthogonal to a timelike

four-velocity:

habU
b = 0. (2.82)

These are three restrictions on the metric perturbation. We choose a frame

in which the four-velocity vector is:

Ua = [1, 0, 0, 0]T . (2.83)
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This imposes the metric perturbation to be:

hab =



0 0 0 0

− h11 h12 0

− − h22 0

− − − 0


. (2.84)

We finally are left with the traceless condition:

h = 0. (2.85)

This is the final condition on the metric perturbation and it enforces it to

be:

hab =



0 0 0 0

0 h11 h12 0

0 h12 −h11 0

0 0 0 0


. (2.86)

We are left with two degrees of freedom in the metric perturbation. These

satisfy the wave equation. We should additionally note that they are not

sourced by any matter. These are gravitational waves.

2.4.5 Comparing Routes

Each route had the same two starting points:

1. An expression for the Einstein tensor to linear order in the perturba-
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tion.

2. The understanding that there exists a gauge freedom which can be used

to restrict the form of the metric perturbation without changing the

physics.

The different methods of analyzing weak gravitational fields led to the

same result of propagating degrees of freedom in the traceless, transverse

part of the metric perturbation. We call these gravitational waves. It is

worth noting that the perturbations can be expressed as:

hij = h11



0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


+ h12



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


. (2.87)

If we define two matrices A andB to be orthogonal if Tr(AB) = Tr(BA) = 0,

then the two matrices in the equation above are orthogonal. Consequently we

have expressed our metric perturbation in terms of an orthogonal basis which

is independent of position and time. The coefficients of the basis matrices

are scalar functions of spacetime i.e they generate a number for each point

in spacetime. The gravitational wave equations are:

�h11 = 0

�h12 = 0.

(2.88)
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This ends the treatment of the weak field case. The gravitational wave

equations will be further analyzed in later sections.

2.5 Summary

In this chapter we reviewed the Einstein equations that relate the ge-

ometry of spacetime to matter. We found that for a system without matter

the simplest solution to the Einstein equations is the Minkowski metric. Fol-

lowing that we used perturbation theory in GR to study weak fields on a

Minkowski background.

We used two routes. For the first route we decomposed the metric pertur-

bations into scalar, vector and tensor components. The tensor - on account

of being a 3× 3 matrix - was further decomposed into a trace and traceless

part. We next derived the Einstein equations for the metric perturbations

and studied them in the transverse gauge. This gauge enforced the vector and

traceless tensor perturbations to be divergenceless in space. This accounted

for four conditions on the metric. We solved the Einstein equations in the

transverse, traceless gauge and noted that the scalar and vector components

of the perturbation vanish. The remaining two degrees of freedom were in the

traceless, transverse tensor components and they satisfied the wave equation.

Using this route we concluded that the degrees of freedom that correspond

to gravitational waves were in the traceless, transverse tensor components of

the metric perturbations. These two degrees of freedom that propagated as

34



waves were called gravitational waves.

For the second route we employed the harmonic gauge. We found that

the metric perturbations satisfy the wave equation. We checked that the har-

monic gauge allows us to put eight restrictions on our metric perturbations.

The remaining two degrees of freedom came from the traceless part of the

metric perturbations which was transverse to the four wave vector and also

to a time-like four velocity. This ended the treatment of the weak field case

using the harmonic gauge.

We also saw that these degrees of freedom can be expressed in terms of

scalar coefficients in an orthogonal matrix basis.
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Chapter 3

Cosmological Perturbation

Theory

This is a review of cosmological perturbation theory [6] [13]. In Section

3.1 we discuss the simplest possible mathematical representation of the cos-

mological spacetime and matter. We then study perturbation theory on this

spacetime and matter.

3.1 Cosmology

Cosmology is the study of the universe at scales of millions of light-years.

The Einstein field equations - as it will be seen shortly - simplify greatly

when we study the universe at such large scales. The subsequent insights

provided are very rich because through them one may chart the history of
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the universe and predict its fate. In this section we will study the simplest

possible universe through GR.

Einstein’s equations require the metric and stress-energy tensors. For

cosmology the forms of these inputs are grounded in philosophical prejudices

and observations [10]. These presuppositions about the universe date back

to Copernicus in the 16th century. The Copernican Principle states that we

are not in a privileged position in the universe. By extension if we were in

a different part of the universe our observations would be unchanged. The

Copernican Principle, which is also known as the Principle of Ordinariness,

therefore removes from our observations a dependence on position. This is

referred to as homogeneity. It was also presupposed that there are no pre-

ferred directions in space: that observations along î should not be different

from the observations along ĵ or k̂1. This is called isotropy. These philo-

sophical biases are confirmed by observations. For example we find that the

universe is filled with a background thermal radiation of 2.7 Kelvin. This

is called the Cosmic Microwave Background (CMB) and its temperature is

measured to be the same in every direction2. The CMB is a strong indicator

of isotropy.

We now derive the simplest metric for the cosmological spacetime. We

choose a coordinate system such that there is no mixing of time and spa-

1At this point it is imperative to reiterate that this discussion is valid on scales of
millions of light years. On the scale of the solar system - for example - these prejudices
do not work.

2Fluctuations to the CMB are no more than ±0.001 Kelvin. This point will become
important when we discuss perturbations
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tial components. This removes all dtdxi terms from the metric. We next

presuppose spatial flatness which means that distances in space are calcu-

lated using Pythagoras’ Theorem. By extension the line element in (t, x, y, z)

coordinates is:

ds2 = −dt2 + a2
x(x

b)dx2 + a2
y(x

b)dy2 + a2
z(x

b)dz2 (3.1)

where ai(t, x, y, z) represents the expansion in the î direction and is called

the scale factor. We recall that the Copernican Principle implies that the

expansion of the universe does not depend on position and is homogeneous.

The line-element for cosmology gets modified to:

ds2 = −dt2 + a2
x(t)dx

2 + a2
y(t)dy

2 + a2
z(t)dz

2. (3.2)

Isotropy further adds to the simplicity already imposed. Equal expansions

in all directions enforces the line-element of cosmology to:

ds2 = −dt2 + a2(t)dx2 + a2(t)dy2 + a2(t)dz2

ds2 = −dt2 + a2(t)eijdx
idxj

(3.3)

where eij is the Euclidean metric. The cosmological metric in matrix form
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is:

gab =



−1 0 0 0

0 a2 0 0

0 0 a2 0

0 0 0 a2


. (3.4)

As mentioned before observations of matter in the large scale universe

also indicate homogeneity and isotropy. These qualities should be reflected

by the stress-energy tensor that represents this matter. For example the

energy-representing quantities should not be functions of position. If there

exists a pressure then it should be the same in all directions. It should also be

noted that any 3-velocity of the matter distribution violates isotropy; hence

the matter distribution should be assumed to be at rest which enforces the

four-velocity dual vector to be:

ua = [−1, 0, 0, 0]. (3.5)

We use the perfect fluid to model the matter distribution in the homoge-

neous and isotropic universe. The stress-energy tensor for a perfect fluid was

specified in equation (2.3). In matrix form it is:

T ba =



−ρ(0) 0 0 0

0 p(0) 0 0

0 0 p(0) 0

0 0 0 p(0)


(3.6)
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in which every variable is only a function of time3. The superscripts (0)

indicate that this quantity represents the homogeneous and isotropic uni-

verse which we alternatively call the Friedmann–Lemaitre–Robertson–Walker

(FLRW) universe.

We now have the inputs to use GR to investigate our universe.

The Einstein tensor takes the form:

Ga
b =



−3H2 0 0 0

0 −H2 − 2ä
a

0 0

0 0 −H2 − 2ä
a

0

0 0 0 −H2 − 2ä
a


(3.7)

where H = ȧ
a

is the Hubble factor. Before proceeding we note that the simple

forms of both - the Einstein and stress-energy - tensors arise because of the

symmetries imposed on the background cosmological spacetime and matter-

energy density. The identical elements along the diagonal for the spatial

components are manifestations of isotropy. The variables being position-

independent indicates homogeneity. The Einstein field equations become

simpler because of the symmetries present in the FLRW universe.

We now derive the different components of equation (2.1). The (0, 0)

3We introduce the stress-energy tensor with one index up because factors of a get
canceled and this makes its form simpler. We will extend this practice to the Einstein
tensor when we compute the Einstein equations.
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equation is:

G0
0 = 8πGT 0

0

H2 =
8πG

3
ρ(0).

(3.8)

The spatial equations are:

Gi
j = 8πGT ij

H2 +
2ä

a
= −8πGp(0).

(3.9)

One may re-express both equations as:

ä

a
= −4πG

3
(3p(0) + ρ(0)). (3.10)

We next solve for equation (2.6):

T ab;a = 0

ρ̇(0) = −3H(ρ(0) + p0).

(3.11)

3.1.1 Example: Solution in a Dust-Dominated Uni-

verse

The equations above can be used to study different epochs of the universe.

In the current epoch of the universe the pressure in the stress-energy tensor

is zero. This indicates that the interactions between matter at the largest of
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scales is negligible. Matter that behaves this way is called “dust” and it is

represented by the stress-energy tensor:

Tab = ρuaub. (3.12)

In the current - dust dominated - epoch, the spatial equations (3.9) are4:

ä = − ȧ
2

2a
. (3.13)

We also note that equation (3.11) becomes an ordinary differential equation,

which can be solved to give:

ρ =
ρ0

a3
(3.14)

where ρ0 is a constant5. This implies that the density of the matter field is

inversely proportional to the volume of the universe. Therefore as the uni-

verse expands it becomes dilute. We now substitute these results in equation

(3.10) and solve for the scale factor.

aȧ2 =
8πG

3
ρ0

√
ada =

√
8πG

3
ρ0dt.

(3.15)

4This simplification will be used extensively when we calculate the perturbed equations
of motion.

5We have dropped the superscript (0) for this example. It should be understood that
we are dealing with the homogeneous and isotropic universe.
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The equation above can be solved to give:

a(t) = (6πGρ0)
1
3 (t− t0)

2
3 (3.16)

where t0 is the initial time for which the scale factor is zero.

This ends our treatment of the FLRW universe. The dynamics found are

the background solutions on which we will study the perturbations.

3.2 Introducing Perturbations

In this section we introduce perturbations to the homogeneous and isotropic

cosmological metric and stress-energy tensor.

We start with the metric. Recall the full line element we had written

down in Minkowski spacetime in equation (2.44). We note that in cosmology

every space component gets multiplied by the scale factor to account for the

expansion. Therefore the full line element of cosmology can be written as:

ds2 = −(1 + 2φ)dt2 + 2a(t)widtdx
i + a2[(1− 2ψ)eij + 2sij]dx

idxj. (3.17)

We recall that φ and ψ are scalars, wi is a three-vector and sij is a traceless

3× 3 matrix.

We now introduce perturbations in the stress-energy tensor:

T ab = (ρ+ p)uaub + pδab . (3.18)
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Note that ρ, p and ua are perturbed. We

1. Break isotropy by equipping the fluid with a three-velocity vi. Follow-

ing that we make all perturbations functions of space to break homo-

geneity. Under these requirements:

ua(t, x
i) = [−1− g

(1)
00

2
(t, xi), a(t)v

(1)
i (t, xj)]

ρ(t, xi) = ρ(0)(t) + ρ(1)(t, xi)

p(t, xi) = p(0)(t) + p(1)(t, xi)

(3.19)

where the superscript (1) represents a perturbation. Note that the four-

velocity is a unit time-like vector. This enforces the unit four-velocity

vector to be:

ua = [1− g
(1)
00

2
(t, xi),

eik(v
(1)
k − g

(1)
0k )

a
]T . (3.20)

We have scalar perturbations and one three-vector perturbation. To

keep the treatment general we add a three-tensor perturbation Σ
i(1)
j (t, xk).

This is referred to as anisotropic stress.
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2. The different elements of the full T ab are:

T 0
0 = −ρ

T 0
i = (p(0) + ρ(0))av

(1)
i

T i0 = −(p(0) + ρ(0))
eik(v

(1)
k − g

(1)
0k )

a

T ij = δijp+
eik

a2
Σ

(1)
kj .

(3.21)

3. To get the stress-energy tensor in a simpler algebraic form we prescribe

that:

qi(1) = (p(0) + ρ(0))avi(1). (3.22)

Under this definition the full stress energy tensor is6:

T 0
0 = −ρ

T 0
i = qi

T i0 =
eik

a2
[−qk + a(p(0) + ρ(0))g

(1)
0k ]

T ij = δijp+
eik

a2
Σjk.

(3.23)

In the next section we will discuss the decomposition of these perturba-

tions.

6It is understood that v, q and Σ only occur as perturbations. Therefore from now on
the label (1) will not be used
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3.3 Decomposition Based on Rotations

Vectors and tensors can be decomposed and expressed in terms of basis.

The decomposition gives meaning to the components of these geometrical

objects. For example one may decompose a vector in the Cartesian basis

and then study the components in the x-direction. In this section a basis

will be constructed based on how the basis elements respond to rotations

in Fourier space by an angle θ. We will use this basis to decompose our

perturbations.

3.3.1 Fourier Transform

We work in Fourier space. This necessitates taking a Fourier transform

of all functions of space. If one starts off with an object that is a function

of space variables then the Fourier transform allows one to view that object

in terms of of plane waves with some coefficients. Assume one has the three-

tensor M ij(t, xk); this is expressed in Fourier space as:

M ij(t, xl) =

∫
d3kei

~k.~xM̃ ij(t, kl) (3.24)

where M̃ ij is the Fourier transform, ki is the Fourier mode or the three wave

vector and ei
~k.~x is the plane wave7. If there is a spatial derivative acting on

equation (3.24) then on the right hand side it will pull down a factor of ikj

7Note that the plane wave has no time-dependence. The time-dependence is in the
coefficient.
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and time derivative will act on the coefficient of the plane wave.

As an exercise we express the gravitational wave equations for weak fields

on flat spacetime - equation (2.88) - in Fourier space. We define:

h11(t, xl) =

∫
d3kei

~k.~xh̃11(t, kl). (3.25)

We substitute for h11 and find that the gravitational wave equation becomes:

¨̃h11 = −k2h̃11 (3.26)

where k2 represents the square of the magnitude of the three wave vector.

3.3.2 Constructing the Basis

To construct the basis mentioned previously start with a Fourier mode

ki. Perpendicular to that one has a two-dimensional plane. Pick ei1 and ei2

to be orthonormal vectors spanning that plane. One may - for convenience

- relate [ei1, e
i
2, k̂

i] with [̂i, ĵ, k̂]. Consider rotations in that plane by angle θ,

an operation performed by Jθ:

Jθ =


cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

 . (3.27)
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One may then write the following eigenvalue equations:

Jθe
i
± = e±iθei± (3.28)

and

Jθe
i
3 = ei3 (3.29)

where

ei± =
ei1 ± iei2√

2
(3.30)

and

ei3 = k̂i. (3.31)

A vector in Fourier space may be decomposed using the orthonormal basis

ei± (which have eigenvalues e±iθ) and ei3 (which has an eigenvalue of 1). For

decomposition of three-tensors one may construct an orthonormal basis using

outer products of these three unit vectors. The rotation operator will act on

each basis vector separately as such:

Jθ(e
j
+ × ek+) = (Jθe

j
+)× (Jθe

k
+)

= (eiθej+)× (eiθek+)

= e2iθ(ej+ × ek+).

(3.32)

Possible basis elements are ei− × ej− (with eigenvalue e−2iθ), ei+ × ej− (with

eigenvalue 1) and ei−× e
j
3 (with eigenvalue e−iθ). If we denote the eigenvalue
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by eimθ - where m is an integer - then a scalar can only correspond to m = 0,

the basis elements for a three-vector can take values between m = −1 to

m = 1 and for a basis element of a three-tensor m can go from −2 to 2.

Based on the eigenvalue equation we define a basis element to be a:

1. Helicity scalar if m = 0,

2. Helicity vector if m = ±1,

3. Helicity tensor if m = ±2.

We can also conclude that:

1. A scalar in Fourier space may only correspond to a helicity scalar.

2. For a three-vector in Fourier space, Ṽ i:

Ṽ i = ṽ+e
i
+ + ṽ−e

i
− + ṽ3e

i
3. (3.33)

Therefore a three-vector has helicity vector components (with m = ±1)

and a helicity scalar part. As seen in equation (3.33) the helicity vector

components are transverse (orthogonal) to the Fourier mode.

3. Lastly three-tensors in Fourier space may be decomposed in all three

helicities8.

(a) The helicity scalar components are formed by linear combinations

of ei+e
j
−, ei−e

j
+ and ei3e

j
3. For example one of the basis elements is

8For examples please consult chapter 5.
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eij:

eij = 2ei(+e
j
−) + ei3e

j
3. (3.34)

(b) Helicity vector components are formed by linear combinations of

e
(i
+e

j)
3 and e

(i
−e

j)
3 . We define a helicity vector M ij to be transverse

if it satisfies M ije3
i e

3
j = 0.

(c) The helicity tensor basis are formed by linear combinations of ei+e
j
+

and ei−e
j
−. Therefore for a helicity tensor M ij to be transverse, it

need only satisfy M ije3
i = 0.

As an example a three-tensor in Fourier space can be written as:

R̃ij = (ei3e
j
3 + beij)RS + ei+e

j
3RV + ei−e

j
−RT (3.35)

where b is a constant and the subscripts S, V and T represent the

coefficients for the helicity scalar, helicity vector and helicity tensor

basis elements respectively.

3.3.3 Interpreting the Basis

We now check what our findings from the previous subsection mean if we

do not take a Fourier transform of our functions.

A three-vector from equation (3.33) can be written as:

Vi = v1i + v2i + v,i (3.36)
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where v is a helicity scalar9 and v1i and v2i are helicity vectors that are

divergenceless:

vi,i = 0. (3.37)

The equation above corresponds in Fourier space to the helicity vector being

transverse.

A three-tensor can be expressed as:

Tij = tij + 2t(i,j) + [∂i∂j − ceij∇2]t (3.38)

where

1. tij is the helicity tensor. It should be divergenceless i.e10:

tij,i = 0. (3.39)

Note that if Tij is traceless, then tii = 0.

2. ti is a helicity vector. If Tij is trace-free then the helicity vector should

be divergenceless i.e: ti,i = 011.

3. t is a helicity scalar.

4. c is a constant. If Tij is traceless then c = −1
3
.

9Recall that a partial derivative corresponds in Fourier space to multiplication by ki.
10This corresponds in Fourier space to tij being transverse to the Fourier mode.
11In Fourier space, this would mean that the helicity vector is transverse to the Fourier

mode.
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In this section we generalized the interpretation of helicity beyond the con-

text of Fourier space. We will use the results from this section to decompose

our metric and stress-energy tensor perturbations12.

3.4 Decomposing Perturbations Based on He-

licities

The full line element of cosmology is:

ds2 = −(1 + 2φ)dt2 + 2a(t)widtdx
i + a2[(1− 2ψ)eij + 2sij]dx

idxj. (3.40)

We recall that φ and ψ are scalars, wi is a three-vector and sij is a traceless

3× 3 matrix. We find that:

1. φ and ψ correspond only to a helicity scalars. We have two degrees of

freedom here.

2. wi - a three-vector - has a helicity scalar (which we denote by B) and

helicity vector components (which we call Si). We set:

2wi = B,i + Si. (3.41)

We note - from the discussion in the previous chapter - that Si is

divergenceless. Therefore we have one degree of freedom in B and two

12We can also use this decomposition in Section 2.4.3.
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in Si.

3. sij - a traceless three-tensor - has a helicity scalar (E), helicity vector

(Fi) and helicity tensor (hij) components. Keeping in line with the

prescriptions given in the relevant literature we impose that:

2sij = 2(∂i∂j −
eij
3
∇2)E + 2F(i,j) + hij. (3.42)

We note that sij being traceless implies that F i
,i = 0 and hii = 0. This

is one condition each on Fi and hij. Keeping in line with the discussion

in the previous section we conclude that hij is divergenceless:

hij,i = 0. (3.43)

These are three conditions on hij. In counting the number of indepen-

dent functions we note that E accounts for one, Fi accounts for two

and that hij also accounts for two.

We finally point out that is customary to absorb the ∇2E term in ψ.

This decomposition is extended to the perturbations to the stress-energy
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tensor. The perturbation part of this tensor is:

T
0(1)
0 = −ρ(1)

T
0(1)
i = qi

T
i(1)
0 =

eik

a2
[−qk + a(p(0) + ρ(0))g

(1)
0k ]

T
i(1)
j = δijp

(1) +
eik

a2
Σjk.

(3.44)

We find that:

1. ρ(1) and p(1) are helicity scalars.

2. qk can be decomposed in terms of a helicity scalar and helicity vectors.

3. Σjk can be decomposed in terms of all three helicities mentioned13.

Now we proceed to find the Einstein equations for each category of per-

turbations.

3.5 Scalar Perturbation Equations

The helicity scalar perturbations in the line element are:

ds2 = −(1 + 2φ)dt2 + aB,idtdx
i + a2[(1− 2ψ)eij + 2E,ij]dx

idxj. (3.45)

13The different components of qk and Σij will be specified later.
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The corresponding perturbations in stress-energy tensor are:

T
0(1)
0 = −ρ(1)

T
0(1)
i = q,i

T
i(1)
0 =

eik

a2
[−q,k + a(p(0) + ρ(0))B,k]

T
i(1)
j = δijp

(1) +
eik

a2
Σ,jk.

(3.46)

The spatial Fourier transform of the Einstein equations at linear order are

as follows:

G̃0
0 = 8πGT̃ 0

0

3H( ˙̃ψ +Hφ̃) +
k2

a2
[ψ̃ +H(a2 ˙̃E − aB̃)] = −4πGρ̃(1)

(3.47)

G̃0
i = 8πGT̃ 0

i

˙̃ψ +Hφ̃ = −4πGq̃.

(3.48)

The (i, j) equations for i 6= j are:

G̃i
j = 8πGT̃ ij

¨̃E + 3H ˙̃E −
˙̃B

a
− 2HB̃

a
+
ψ̃ − φ̃
a

=
8πGΣ̃

a2
.

(3.49)
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The trace part of the spatial set of equations is:

G̃i
i = 8πGT̃ ii (3.50)

¨̃ψ + 3H ˙̃ψ +H ˙̃φ+
|k|2

3

[
¨̃E + 3H ˙̃E −

˙̃B

a
− 2HB̃

a
+

(ψ̃ − φ̃)

a2

]
=

4πGp̃(1) − 4πG
|k|2

3a2
Σ̃.

(3.51)

We note that the equation above can be simplified using equation (3.49).

The simplified version of equation (3.51) is:

G̃i
i = 8πGT̃ ii

¨̃ψ + 3H ˙̃ψ +H ˙̃φ = 4πG

[
p̃(1) − |k|

2

a2
Σ̃

]
.

(3.52)

The spatial Fourier transform of the remaining equations are:

T̃ a0;a ≡ ˙̃ρ(1) + 3H(ρ̃(1) + p̃(1)) =

|k|2

a2
q̃ + (ρ(0) + p(0))

[
3 ˙̃ψ + |k|2

(
˙̃E − B̃

a

)]
+
H|k|2

a2
Σ̃

(3.53)

T̃ ai;a ≡ ˙̃q(1) + 3Hq̃(1) =
|k|2

a2
Σ̃− (ρ(0) + p(0))φ̃− p̃(1). (3.54)

Therefore the scalar modes exhibit non-trivial dynamics. However, these

equations are not analyzed further. We proceed now to study helicity vector

perturbations.
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3.6 Vector Perturbation Equations

The helicity vector perturbations in the line element are:

ds2 = −dt2 + aSidtdx
i + a2[eij + 2F(i,j)]dx

idxj (3.55)

with the restrictions that the perturbations do not diverge:

Si,i = 0

F i
,i = 0.

(3.56)

The corresponding perturbations in the stress-energy tensor are:

T
0(1)
0 = 0

T
0(1)
i = qi

T
i(1)
0 =

eik

a2
[−qk + a(p(0) + ρ(0))Sk]

T
i(1)
j =

eik

a2
Σ(j,k).

(3.57)

The (0, 0) component of the Einstein equation is identically zero:

G0
0 = 8πGT 0

0 = 0. (3.58)
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The spatial Fourier transform of the (0, i) component is:

G̃0
i = 8πGT̃ 0

i

|k|2
(

˙̃Fi −
S̃i
a

)
= 16πGq̃i.

(3.59)

Under the redefinition:

vi = Ḟi −
Si
a

(3.60)

equation (3.59) becomes:

|k|2ṽi = 16πGq̃i. (3.61)

The spatial Fourier transform of the (i, j) equation is:

G̃i
j = 8πGT̃ ij

˙̃v(ikj) + 3Hṽ(ikj) =
4πGΣ̃(ikj)

a2
.

(3.62)

If one looks at the (i, i) part of these equations one may peel off the Fourier

mode dual vector to get:

˙̃vi + 3Hṽi =
4πGΣ̃i

a2
. (3.63)

In the absence of the anisotropic stress the resultant ordinary differential

equation has the solution:

vi ∝
1

a3
. (3.64)
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Therefore the metric perturbation decays with an expanding universe. In the

absence of anisotropic stress the spatial Fourier transform of the remaining

equation is:

T̃ ai;a ≡ ˙̃qi + 3Hq̃i = 0. (3.65)

Therefore qi follows a similar fate to that of the metric perturbations; it

also decays with the expansion of the universe. This is further confirmed by

equation (3.61); the system therefore is consistent.

The vector modes - in this case - may thus be ignored. We next study the

tensor modes.

3.7 Tensor Perturbation Equations

The helicity tensor perturbations in the line element are:

ds2 = −dt2 + a2(eij + hij)dx
idxj (3.66)

where the symmetric hij is transverse and traceless:

hij,i = 0

hii = 0.

(3.67)

We recall that previously when studying weak gravitational fields we found

the gravitational wave equation through the transverse, traceless metric per-

turbation. Therefore we expect that the equations of motion we get from the
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helicity tensor modes represent gravitational waves in the universe. We also

note that there are only two degrees of freedom left.

To a reasonable approximation the helicity tensor perturbation is sourced

by matter that is negligible; one may therefore set the stress-energy tensor

to zero.

The spatial Fourier transform of the Einstein field equation gives:

¨̃hij = −|k|
2

a2
h̃ij − 3H ˙̃hij. (3.68)

Recall that a helicity tensor has m = ±2. Thus one may re-express h̃ij as:

h̃ij(t, k
i) = h+(t, ki)H+

ij + h−(t, ki)H−ij (3.69)

where H+
ij and H−ij form a time-independent orthonormal basis of helicity

tensors with m = ±2 respectively and h+ and h− are their respective time-

dependent coefficients 14.

Upon substituting equation (3.69) in equation (3.68), we find:

ḧ+ = −|k|
2

a2
h+ − 3Hḣ+. (3.70)

This is the equation for gravitational waves in the FLRW universe 15.

One should recall at this point that the helicity tensor perturbation only

affects the spatial metric. The graviton modes are therefore present in the

14We previously saw in Section 2.4.5 that we could construct such a basis
15We find a similar equation for h−.
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perturbation to the spatial metric.

This concludes our review of standard cosmological perturbation theory.

3.8 Summary

In this chapter we studied perturbations in the homogeneous and isotropic

universe. We started by discussing the homogeneous and isotropic universe

and formulated the corresponding metric and stress-energy tensors. Follow-

ing that we calculated the Einstein equations. These were the background

solutions. Next both - the metric and stress-energy - tensors were perturbed.

The perturbations were decomposed into scalar, vector and tensor compo-

nents. Following this we studied how a geometrical object responds to ro-

tations in Fourier space. Based on the eigenvalues of these rotations we

defined helicity scalars, helicity vectors and helicity tensors. We decomposed

our perturbations into components of different helicities. It was noted that

the helicity tensors were traceless and transverse to the three wave vector.

Based on our findings from the previous chapter we expected that the he-

licity tensor perturbations to the metric will lead to the gravitational wave

equation.

Following this decomposition in terms of helicities, we derived the Einstein

equations to linear order in the perturbations. The helicity scalars exhibited

non-trivial dynamics and were not analyzed further. The helicity vector

modes vanished. Finally we found the propagation behavior for gravitational
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waves through the helicity tensor perturbation equations.
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Chapter 4

Constrained Hamiltonian

Dynamics and Gravity with

Matter-Time

In this chapter we first introduce the Hamiltonian formalism which is a

method of finding the dynamics of a system in terms of positions and mo-

menta. The positions and momenta are used to calculate the Hamiltonian

which is the energy of the system. We next note that some physical systems

exhibit restrictions between their positions and momenta which we call con-

straints. In Section 4.2 we generalize the Hamiltonain formulation to include

such physical systems.

In Section 4.3 we discuss the mathematical formulation of a field and

generalize the Hamiltonian method to allow for us to study them. In Section
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4.4 the Hamiltonian formulation of a scalar field in a curved spacetime is

derived. We note that for a Minkowski spacetime, the dynamics of the scalar

field are the same as the propagation equation for gravitational waves in a

flat spacetime. A similar result is obtained for the scalar field in the FLRW

universe.

In Section 4.5 we discuss the Hamiltonian formulation of GR. It is noted

that the Hamiltonian in GR vanishes. We then - in Section 4.6 - consider a

system of gravity and dust in its Hamiltonian form and equate the parameter

time with dust. We find that under this specification (and within certain

allowed rules) the Hamiltonian no longer vanishes. Following that we derive

the dynamics of this system.

4.1 The Hamiltonian Formulation

We start with the action:

S =

∫
L(qn, q̇n)dt (4.1)

where S is the action, L is the Lagrangian and t is time. The Lagrangian

is a function of the configuration variables qn (which are also referred to

as position) and their time derivatives q̇n (also known as velocities). The

positions and velocities specify the state of a system at any chosen time t0

[8]. Note that the configuration variables are finite in number.
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The momentum variables pn are defined as:

pn =
∂L

∂q̇n
. (4.2)

The position and momentum variables are referred to as canonical variables

and/or phase-space variables. For now we consider cases in which we can use

equation (4.2) to express the velocities in terms of the phase-space variables.

This implies that we are assuming the existence of an invertible map between

the velocities and momenta. This assumption will be relaxed in Section 4.2.

The next step is to define the Hamiltonian as:

H = pnq̇n − L (4.3)

where the Lagrangian and the velocities have to be re-expressed in terms

of the phase-space variables and there is a summation over n. We then

re-express the action as:

Sc =

∫
[pnq̇n −H]dt. (4.4)

Expressed in this way the action is called the canonical action and the term

pnq̇n is called the symplectic term.

Upon varying the action, extremizing it (i.e setting δSC = 0) and compar-

ing coefficients of the phase-space variables, we get the following equations

65



of motion1:

q̇n =
∂H

∂pn
(4.5)

ṗn = −∂H
∂qn

. (4.6)

These are Hamilton’s equations of motion. They represent the dynamics of

a system in terms of the phase-space variables.

To rewrite Hamilton’s equations differently we introduce the Poisson Bracket

formalism. The Poisson Bracket (PB) for two functions f(qn, pn) and g(qn, pn)

is defined as:

[f, g]PB =
∂f

∂qn

∂g

∂pn
− ∂f

∂pn

∂g

∂qn
. (4.7)

Hamilton’s equations of motion may be re-expressed as:

q̇n = [qn, H]PB (4.8)

ṗn = [pn, H]PB. (4.9)

4.1.1 Example: Parameterized Particle in Flat Space-

time

The parameterized particle is defined to follow a path in spacetime that is

parameterized by a single function λ. The action for a parameterized particle

1We assume that the variations of position at the end points of integration are zero.
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is:

S =

∫
dλ
(√

ηabẋaẋb
)

(4.10)

where a dot denotes differentiation with respect to λ and ẋa are the velocity

terms.

We note that the form of the action stays unchanged if we change the

parameter on the curve from λ to some function f(λ). This change in pa-

rameter is called reparameterization. We note that the velocity terms change

as:

ẋa =
dxa

dλ

=
dxa

df

df

dλ

= (xa)′ḟ

(4.11)

where the prime denotes differentiation with respect to the function f(λ).

We further note that:

df =
df

dλ
dλ. (4.12)

This can be inverted to give:

dλ =
df

ḟ
. (4.13)

By changing the parameter from λ to f(λ) our action becomes:

S =

∫
df
(√

ηab(xa)′(xb)′
)
. (4.14)
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Therefore the action stays unchanged under this reparameterization. Because

λ and f(λ) correspond to time ‘t’ from the definition of the Lagrangian in

equation (4.1) we say that the theory is time reparameterization invariant

(TRI).

We now proceed to find the Hamiltonian formulation2. The momentum

is:

pa =
ηabẋ

b

√
ẋcẋc

(4.15)

and it is seen that inverting to get the velocity in terms of the momentum is

not possible. We do however note that:

ηabpapb = 1. (4.16)

Because inverting was problematic we find difficulty in re-expressing the La-

grangian in terms of the phase-space variables. However we note the follow-

ing:

H = paẋ
a − L

=
ẋaẋ

a

√
ẋbẋb

−
√
ẋcẋc

= 0.

(4.17)

The Hamiltonian for this system is zero.

In this subsection we first found that the action was invariant under repa-

2We have reverted back to λ.
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rameterizations of λ. We encountered difficulty in expressing the velocities

in terms of momenta. Then we found that the Hamiltonian was zero. To say

more about the dynamics of the system we need to generalize the Hamilto-

nian formulation to include systems which have these symmetries; we do so

in the next section.

4.2 Hamiltonian Formulation of Systems with

Constraints

Previously in equation (4.2) we had assumed the existence of an invert-

ible map between velocities and momenta. We now consider the case where

the definition in equation (4.2) does not generate an invertible map. That

happens - as we saw in the case for the parameterized particle - when there

existed an independent relation between the momenta. We generalize be-

yond this and consider cases when there exist independent relations between

the phase-space variables. We define these independent relations between

the momentum and position variables to be the primary constraints of the

Hamiltonian formalism [3][9][16][20]. The primary constraints are expressed

as:

φm(q, p) ≈ 0 (4.18)

where the subscript m represents the number of primary constraints. The

≈ sign is indicative of the constraints weakly equaling zero until they are
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enforced; that is when the ≈ sign gets replaced by a strong equality =. In

the case of the parameterized particle the primary constraint is:

φ = ηabpapb − 1 ≈ 0. (4.19)

When the velocities can be expressed in terms of the canonical variables,

we write the Hamiltonian:

H = pnq̇n − L. (4.20)

This Hamiltonian is not unique. We can add to it any linear combination

of the primary constraints and, because they are all zero, our theory will be

unchanged. We use this freedom to write:

HT = H + vmφm (4.21)

where vm(t) are arbitrary functions of time and it will be assumed that they

are not functions of the canonical variables. The reason for this specification

will be discussed shortly. Hamilton’s equations become:

q̇n =
∂H

∂pn
+ vm

∂φm
∂pn

ṗn = −∂H
∂qn
− vm

∂φm
∂qn

.

(4.22)
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The time derivative of a function g(qn, pn) is:

ġ =
∂g

∂qn
q̇n +

∂g

∂pn
ṗn. (4.23)

We substitute equation (4.22) in the equation above and rewrite in terms of

Poisson Brackets to get:

ġ = [g,H + vmφm]PB. (4.24)

Since the constraints are functions of the phase-space variables it is a reveal-

ing exercise to substitute them in the equation above. The expression for φ̇m

becomes:

φ̇m = [φm, H + vm′φm′ ]PB

= [φm, H]PB + vm′ [φm, φm′ ]PB.

(4.25)

We consider the different scenarios that unfold.

1. The equation above may lead to:

φ̇m = αφm + βφn (4.26)

where α and β are constants. The right hand side is a linear com-

bination of primary constraints each of which were defined as φ ≈ 0.
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Therefore our constraint φm is preserved in time:

φ̇m ≈ 0. (4.27)

This is called the consistency condition of first kind.

2. Equation (4.25) may also lead to a function on the phase-space vari-

ables:

φ̇m = χ(q, p). (4.28)

If we want for the evolution of the system to be constrained then the

constraints of the system should be preserved in time. In this case we

specify χ to be another constraint:

χ(q, p) ≈ 0. (4.29)

This is called the consistency condition of second kind. Under this

specification φ̇m ≈ 0. Constraints generated in this manner are called

secondary constraints. The key difference between primary and sec-

ondary constraints is that primary constraints arise from the definition

of momentum while secondary constraints come from Hamilton’s equa-

tions of motion.

We then check for the time evolution of χ. If it follows the consistency

condition of first kind then there are no more constraints in the theory.

If it follows the consistency condition of second kind then we have the

72



option of specifying another constraint i.e ξ ≈ 0. We can keep repeat-

ing this process of generating constraints this way. We can also stop

investigating the system further if the number of constraints increase

such that the degrees of freedom in the theory reduce significantly. By

extension we cannot generate constraints in this manner indefinitely

because eventually we will be left with no degrees of freedom in the

theory.

3. We can also have equation (4.25) reducing to:

φ̇ = λ (4.30)

where λ is a constant. We specify the Lagrangian such that we do not

encounter this condition.

4. We may also get the condition:

φ̇ = vm(t). (4.31)

In this case (if we want our constraints to be preserved) we set the time

dependent coefficient vm(t) to zero.

We next define any function R(qn, pn) to be first-class if it has zero Poisson

Bracket with all the constraints - both primary and secondary - which are

denoted by φj.

[R, φj]PB ≈ 0. (4.32)
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If this condition does not hold thenR is second-class. One should additionally

note that if R is first-class then its Poisson Bracket with φj strongly equals

a linear combination of the constraints i.e:

[R, φj]PB = rjj′φj′ . (4.33)

It can also be checked that the Poisson Bracket of two first-class quantities is

first-class. We only keep first-class constraints in our theory and remove all

second class constraints3. This is because - as it will be seen next - first-class

constraints are of physical significance.

We consider an example involving time evolution of a physical system.

Starting with the initial state g0 we check what the state is at a later time

δt.

g(δt) = g0 + ġδt

= g0 + δt[g,H + vmφm]PB

(4.34)

where we assume that φm is a primary, first-class constraint4. We will extend

the treatment to secondary first-class constraints shortly. Suppose we had

chosen a different arbitrary variable wm.

g(δt) = g0 + ġδt

= g0 + δt[g,H + wmφm]PB.

(4.35)

3For details on this point please consult Appendix A.1
4We derive g(δt) to linear order in δt.
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The difference between the two final states is given by:

∆g(δt) = δt[g, (vm − wm)φm]PB

= em[g, φm]PB

(4.36)

where

em = δt(vm − wm). (4.37)

The final physical state is the same and therefore the two different set of

phase-space variables correspond to the same physical state. Changes in

phase-space variables which correspond to the same state are called gauge

transformations. They are brought about by taking a Poisson Bracket of g

with eaφa. The primary first-class constraints therefore lead to changes in

the phase-space variables that correspond to the same state.

As an additional step suppose we apply two of these transformations in

succession: first with eaφa and then with fa′φa′ . Redoing this procedure with

the order of the transformations reversed should not change the state.

1. Applying eaφa and then fa′φa′ to g0 gives:

g
′
= g0 + ea[g, φa]PB + fa′ [g + ea[g, φa]PB, φa′ ]PB. (4.38)

2. Going the other way gives:

g
′′

= g0 + fa′ [g, φa′ ]PB + ea[g + fa′ [g, φa′ ]PB, φa]PB. (4.39)
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The difference upon treatment with the Jacobi Identity becomes5:

∆g = eafa′ [g, [φa, φa′ ]PB]PB. (4.40)

Both states are the same physically thus [φa, φa′ ]PB also generates infinites-

imal transformations that do not change the state. Note that this is also

first-class. The only way this treatment is more general that the first one

is that before we only had first-class primary constraints as the generators

of gauge transformations. This treatment admits first-class secondary con-

straints also. Note that the Poisson Bracket of two first-class constraints is

also first-class; that in turn may be primary or secondary constraints (or a

combination of the both). Also note that the Poisson Bracket of two primary

constraints can give a secondary constraints as shown by the consistency con-

dition of second kind.

Therefore the constraints that are important from a physical standpoint

are first-class constraints because they are the generators of gauge-transformations

that leave the physical state unchanged [9] [17]. For physically observable

quantities, ∆g = 0; consequently the Poisson Bracket of g with first-class

constraints is zero. This implies that the physical observables are first-class

quantities [16]. If a function has a non-zero Poisson Bracket with the first-

class constraints it is (second-class by definition and) not physical. With

a first-class constraint one should pick a condition on the phase-space vari-

5The Jacobi Identity is: [f, [g, h]PB ]PB + [h, [f, g]PB ]PB + [g, [h, f ]PB ]PB = 0
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ables and solve the constraint. This condition is called a gauge. Fixing a

gauge is like fixing a coordinate system in phase-space. Fixing coordinates

is not physical and therefore it should be ensured that the gauge picked is

second-class with the constraint it is used to solve.

We summarize the results and discussions from this section:

1. From the definition of the momentum we cannot always invert velocities

in terms of the phase-space variables. This non-invertibility is a conse-

quence of independent relations of the phase-space variables which we

called the primary constraints. We wrote them as φ(q, p) ≈ 0.

2. Enforcing that these conditions are preserved in time sometimes led to

more constraints. These were called secondary constraints.

3. A function R was defined as first-class if it had a zero Poisson Bracket

with all the constraints.

4. First-class constraints generated gauge transformations. These were

transformations in the phase-space variables that left the physical state

unchanged. Thus the important constraints from a physical standpoint

are the first-class constraints.

5. Physical observables are first-class quantities.
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4.2.1 Example: Revisiting the Parameterized Particle

We will now proceed with our treatment of the parameterized particle.

We recall that equation (4.19) is the primary constraint in the theory:

φ ≡ ηabpapb − 1 ≈ 0 (4.41)

and that the Hamiltonian is zero. The total Hamiltonian is:

HT = uφ (4.42)

where u(t) is an arbitrary function of time. We specify that our constraint

should be preserved in time. We write the equation for φ̇.

φ̇ = [φ,H]PB

= [φ, uφ]PB

= 0.

(4.43)

Therefore the constraint is preserved in time by the consistency condition of

first kind. Since there is only one constraint, it is first-class. Therefore the

total Hamiltonian is just a first-class constraint. By extension the evolution

this Hamiltonian generates via Poisson Brackets will be a gauge transfor-

mation. Quantities that are gauge-invariant - i.e that have a zero Poisson

Bracket with H (and φ) - are the physical observables. We now find the
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evolution equations for the canonical variables.

ṗa = [pa, uφ]PB

= u[pa, η
bcpbpc − 1]

= 0.

(4.44)

Therefore the momentum does not evolve and is a constant. For the position

variable we find:

ẋa = [xa, uφ]PB

= u[xa, ηbcpbpc − 1]PB

= 2upa.

(4.45)

The evolution of xa is therefore a constant pa times an arbitrary function of

time. This is a gauge transformation. Therefore the position variable evolves

via a gauge transformation.

We now summarize the salient features of the Hamiltonian formulation of

the parameterized particle in flat spacetime:

1. The action was invariant under reparameterizations of λ.

2. The Hamiltonian was a first-class constraint.

3. Consequently evolution was a gauge transformation.

79



4.2.2 Example: A Newtonian Particle

Consider the canonical action:

S =

∫
dt

[
pq̇ − p2

2
− V (q)

]
(4.46)

where a dot represents differentiation with respect to time t and V - which is

a function of the configuration variable - is a potential. Hamilton’s equations

of motion are:

q̇ = p (4.47)

ṗ = −dV
dq

(4.48)

where p is the momentum conjugate to q. We change the time as: t → τ =

f(t). Under this change the action becomes:

S =

∫
df

ḟ

[
pq

′
ḟ − p2

2
− V (q)

]
=

∫
df

[
pq

′ − p2

2ḟ
− V (q)

ḟ

] (4.49)

where a prime denotes differentiation with respect to f(t). Therefore the

action in equation (4.46) changes under arbitrary time transformations.

We now invent a new action6 by extending the phase space as:

(q(t), p(t))→ (q(s), p(s), φ(s), pφ(s)) . (4.50)

6This action is engineered specifically to show that it is invariant under arbitrary time
transformations.
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The new action is:

S? =

∫
ds

[
pq̇ + pφφ̇−N(s)

(
pφ +

p2

2
+ V (q)

)]
(4.51)

where a dot denotes differentiation with respect to s and N is an arbitrary

function of s. Because we have extended the phase space we anticipate

constraints between the degrees of freedom. We will verify this shortly.

The equations of motion are:

q̇ = Np (4.52)

ṗ = −N dV

dq
(4.53)

φ̇ = N (4.54)

ṗφ = 0 (4.55)

H ≡ pφ +
p2

2
+ V (q) ≈ 0. (4.56)

Equation (4.54) indicates that the time derivative of φ is the arbitrary func-

tion N . Equation (4.56) indicates that the Hamiltonian of this system is

constrained to vanish. Also since there is only one constraint, H is first

class. We substitute equations (4.54) and (4.56) in equation (4.51).

S? =

∫
ds[pq̇ + pφφ̇− φ̇H]. (4.57)
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Upon a change in the parameter from s to u = f(s) we find that the action

does not change:

S? =

∫
df

ḟ
[pq

′
ḟ + pφφ

′
ḟ − φ′

ḟH]

=

∫
df [pq

′
+ pφφ

′ − φ′
H]

(4.58)

where a prime denotes differentiation with respect to f(s). We have verified

that the action S? in equation (4.57) is TRI.

Now we fix a gauge and solve the Hamiltonian constraint7. The gauge

chosen is:

ξ ≡ φ− t ≈ 0. (4.59)

This gauge is second-class with H:

[ξ,H]PB =

[
φ− t, pφ +

p2

2
+ V (q)

]
PB

= [φ, pφ]PB

= 1.

(4.60)

Solving the constraint gives:

pφ = −p
2

2
− V (q). (4.61)

7We have reverted back to the parameter s.
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The action in (4.57) becomes:

S? =

∫
ds

[
pq̇ − p2

2
− V (q)

]
. (4.62)

Hamilton’s equations of motion are:

q̇ = p (4.63)

ṗ = −dV
dq
. (4.64)

Therefore by picking the time-gauge ξ ≡ φ− t ≈ 0 we got the same dynamics

as we did in equations (4.47) and (4.48).

We reiterate the important points of this subsection:

1. We started with the action S in equation (4.46) and found that it was

not invariant under the transformation t→ τ = f(t).

2. We extended the phase space and our canonical variables depended on

the parameter s. We specified the new action S? and noted that it was

invariant under reparameterizations of s.

3. Extending the phase space guarantees constraints in the theory. Conse-

quently we found that the Hamiltonian was constrained to vanish. We

picked a time-gauge to solve the constraint and get the physical Hamil-

tonian. Also by enforcing the time-gauge we shrunk the phase-space

such that it only contained the canonical pair (q, p).
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4.3 Hamiltonian Formulation of Fields

A field generates a number or a tensor at each point in spacetime. For

example a scalar field φ(xa) generates a number at each point in spacetime

and it can be used to model:

1. Matter densities in the universe,

2. Pressure variations in the oceans and

3. Temperature of the atmosphere.

4. Also recall that in Section 2.4.5 we were able to view our metric per-

turbations in terms of functions that return a number for each point in

spacetime. They are also examples of scalar fields.

A vector field Ea(xb) gives a vector at each point in spacetime and it can be

used to model the electric force due to a charged particle. Another example

of a tensor field is the metric gab(x
c).

For the Hamiltonian formalism of a field we separate spacetime into space

and time. This is done by choosing a parameter time t on spacetime such

that t = constant gives spacelike surfaces Σt. We take the configuration

variable of our Hamiltonian theory to be the field at a surface of constant

time t0 i.e ψa(xi, t0). The velocity is its time derivative ψ̇(xi, t0). Both ψ and

ψ̇ specify the state of the system at a given time t0. Because both ψ and

ψ̇ are continuous functions of xi for a constant time t0 there is an infinite
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number of degrees of freedom in the theory 8. We assume the field to be zero

at the boundaries of the surface.

To have a notion of evolution we define a vector field ta such that:

ta∇at = 1. (4.65)

This vector field defines the same point in space at different instants of time.

Thus evolution is given by the Lie derivative with respect to ta. The Lie

derivative for a tensor pab with respect to ta is defined as:

£tp
a
b = tcpab;c + pac t

c
;b − pcbta;c. (4.66)

The time derivative of ψa is therefore given by its Lie derivative with respect

to ta:

ψ̇a = £tψ
a. (4.67)

We call ta the time-flow vector field [10] [15].

We write the Lagrangian of a field ψa as an integral on Σt:

L =

∫
Σt

d3xL̄(ψa(t, xi), ψ̇a(t, xi)) (4.68)

where L̄ is called the Lagrangian density. The conjugate momenta are defined

8Previously, we developed the Hamiltonian theory for the case when the configuration
variable - qn evaluated at constant time - were finite in number.
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as:

πa =
δL

δψ̇a
=

∂L̄

∂ψ̇a
(4.69)

and they are also infinite in number. The Hamiltonian is also expressed as

an integral:

H =

∫
Σt

d3xH̄(ψa, πa) (4.70)

where H̄ is the Hamiltonian density over Σt and it is computed as:

H̄ = πaψ̇a − L̄. (4.71)

The canonical action is:

SC =

∫
dt

∫
Σt

d3x[πaψ̇a − H̄] (4.72)

where
∫

Σt
d3x[πaψ̇a] is the symplectic term. The fundamental Poisson Bracket

between a field φa(t, x) and its conjugate momentum πb(t, y) is:

[φa(t, x), πb(t, y)]PB =

∫
Σt

d3z

[
δφa(t, x)

δφc(t, z)

δπb(t, y)

δπc(t, z)
− δφa(t, x)

δπc(t, z)

δπb(t, y)

δφc(t, z)

]
=

∫
Σt

[
δac δ

c
bδ

3(x− z)δ3(y − z)− 0
]

= δab δ
3(x− y).

(4.73)

Hamilton’s equations are:

ψ̇a = [ψa, H]PB (4.74)
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π̇a = [πa, H]PB. (4.75)

4.4 Hamiltonian Formulation of a Scalar Field

on a Curved Background

The action for a scalar field φ is:

Sφ = −1

2

∫
d4x[
√
−ggab∂aφ∂bφ]. (4.76)

Note the inverse metric in the action. This should be expressed in a con-

venient way that facilitates the Hamiltonian formulation. Arnowitt, Deser

and Misner (ADM) derived such an expression and it follows from the sepa-

ration of spacetime into a parameter time and space. We recall that in this

setting there was a time-flow (ta) which satisfied ta∇at = 1. We express the

time-flow in terms of its components normal to Σt and tangential to Σt as:

ta = Nna +Na (4.77)

where N is called the lapse, na is the unit timelike normal to the surface and

Na is called the shift and it is tangential to the surface. In this setting the

interval between a point (t, xa) on Σt and a point (t+ dt, xa + dxa) on Σt+dt

is [18]:

ds2 = −N2dt2 + qab(dx
a +Nadt)(dxb +N bdt) (4.78)
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where qab is the metric on the surface Σt. Note that qabn
a = Nan

a = 0

because the spatial metric and the shift both reside on the spatial surface.

The total number of functions in the metric is ten: there are three functions

in the shift, one in the lapse and six in the three-metric (because it is a

symmetric three-tensor).

We can use the metric gab from the equation (4.78) and calculate the in-

verse metric gab using the relation gabgbc = δac . Alternatively we can consider

a route in which we start with the general definition of the four-metric:

gab = qab − nanb. (4.79)

Figure 4.1: ADM Decomposition [1]

88



The inverse of the above is:

gab = qab − nanb. (4.80)

Using equation (4.77) we express the normal in terms of the time-flow and

lapse:

na =
ta −Na

N
. (4.81)

We next substitute na in equation (4.80) to get:

gab = −t
atb

N2
+

2N (atb)

N2
+ qab − NaN b

N2
. (4.82)

We can also check that:

√
−g = N

√
q. (4.83)

After substituting the inverse metric in the action in equation (4.76) we

get the terms ta∂aφ. We note that the Lie derivative of the scalar field φ

with respect to ta is:

£tφ = ta∂aφ. (4.84)

We call all such terms φ̇ and they serve as the velocity terms in the Hamil-

tonian formalism. The Lagrangian density is:

L̄φ =
N
√
q

2

[
φ̇2

N2
− 2φ̇Na∂aφ

N2
− (qab − NaN b

N2
)∂aφ∂bφ

]
. (4.85)
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The momentum conjugate to the field is given by the usual prescription:

pφ =
∂L̄

∂φ̇

=

√
q

N
[φ̇−Na∂aφ].

(4.86)

Inverting for φ̇ gives:

φ̇ = Na∂aφ+
Npφ√
q
. (4.87)

The Lagrangian density in terms of the phase-space variables is:

L̄φ =
N
√
q

2

[
p2
φ

q
− qab∂aφ∂bφ

]
. (4.88)

We next find the Hamiltonian density to be:

H̄ = NHφ −NaCφ
a (4.89)

where

Hφ =
1

2

(
p2
φ√
q

+
√
qqab∂aφ∂bφ

)
(4.90)

and

Cφ
a = pφ∂aφ. (4.91)

The canonical action is:

SφC =

∫
dt

∫
Σt

d3x
[
pφφ̇−NHφ −NaCφ

a

]
. (4.92)
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The phase space consists of the canonical pair of (φ, pφ).

The equations of motion are:

φ̇ = Na∂aφ+
Npφ√
q

ṗφ = ∂b(pφN
b +N

√
qqab∂aφ).

(4.93)

We now find how a scalar field propagates on a flat spacetime. We compare

the ADM form of the metric in equation (4.78) to the Minkowski metric in

equation (2.17). We set Na = 0, N = 1 and qab = eab. The equations of

motion are:

φ̇ = pφ

ṗφ = eab∂a∂bφ.

(4.94)

We now find the decoupled equation of motion for φ. We take another time

derivative on the φ̇ equation and then re-express everything in terms of φ.

We find that:

φ̈ = eab∂a∂bφ. (4.95)

Taking a spatial Fourier transform of the above gives:

¨̃φ = −|~k|2φ̃. (4.96)

This equation above represents the dynamics of a scalar field in a flat space-

time. This is the same as the gravitational wave equation that we found in
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Chapter 3 in equation (3.26).

We now check how a scalar field propagates in a homogeneous and isotropic

universe. We compare the ADM form of the metric in equation (4.78) to the

metric in equation (3.3) and set Na = 0, N = 1 and qab = eab

a2
. We find that:

φ̇ =
pφ
a3

ṗφ = aeab∂a∂bφ.

(4.97)

The above in decoupled form is:

φ̈ = −3
ȧ

a
φ̇+

eab∂a∂bφ

a2
. (4.98)

We substitute the Hubble factor and take the spatial Fourier transform to

find:

¨̃φ = −3H ˙̃φ− |
~k|2

a2
φ̃. (4.99)

This is how a scalar field propagates in a homogeneous and isotropic universe.

This confirms that the metric functions that propagate as gravitational waves

- equation (3.70) - can be expressed in terms of scalar fields.

4.5 Hamiltonian Formulation of General Rel-

ativity
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The action for General Relativity is:

SGR =

∫
d4x
√
−gR (4.100)

where R is the Ricci scalar for the full metric.

We substitute the ADM decomposition in
√
−g and R9. The latter - after

using the Gauss-Codacci equation - becomes:

R =(3) R−K2 +KabKab (4.101)

where (3)R is the Ricci scalar on the spatial slice, Kab is the extrinsic curvature

of the spatial slice and K is its trace [10]. The extrinsic curvature Kab

describes how the surface Σt is embedded in the spacetime and it is defined

as:

Kab =
£nqab

2
. (4.102)

We will now express the extrinsic curvature in a different algebraic form.

Substituting the definition of the Lie derivative (4.66) in the equation above

gives:

Kab =
1

2
[ncqab;c + 2nc;(bqa)c]. (4.103)

9We explain how one can do calculus on Σt in Appendix A.2. This Appendix chapter
also has a detailed account of the ADM foliation.
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We then multiply and divide the right hand side by N to get:

Kab =
1

2N
[(Nnc)qab;c + 2Nnc;(bqa)c]

=
1

2N
[(Nnc)qab;c + 2(Nnc);(bqa)c − 2N,(bqa)cn

c].

(4.104)

The third term in the last equation goes to zero because of orthonormality.

Recall that from the 3 + 1 decomposition the normal may be expressed

as:

Nnc = tc −N c. (4.105)

Upon substituting the ADM decomposition for the normal equation (4.104)

becomes:

Kab =
1

2N
[tcqab;c + 2tc;(bqa)c − (N cqab;c + 2N c

;(bqa)c)]

=
1

2N
[£tqab −£Nqab]

(4.106)

where the definition for the Lie derivative with respect to ta and Na has been

used in going from the first equation to the next. The first term on the right

hand side may be rewritten as q̇ab. For the second term, realize that the Lie

derivative is being taken with respect to a spatial vector and the object being

operated upon is also a spatial object. By extension one may use the spatial
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covariant derivative Da in the definition of the Lie derivative10:

Kab =
1

2N
[q̇ab −N cDcqab − 2qc(aDb)N

c]

=
1

2N
[q̇ab − 2D(bNa)].

(4.107)

Therefore the velocity terms in the action enter through the extrinsic curva-

ture.

The Lagrangian density in GR is:

L̄GR = N
√
q((3)R−K2 +KabKab)

= N
√
q((3)R− qabKabq

cdKcd + qacqbdKcdKab)

(4.108)

and it is understood that the velocity terms q̇ab enter through Kab. The

three-momentum πab is calculated via the usual prescription:

πab =
∂L̄GR

∂q̇ab

=
∂L̄GR

∂Kab

∂Kab

∂q̇ab

=
√
q(Kab − qabK).

(4.109)

To re-express the velocity and the Lagrangian density in terms of the phase-

space variables we start by computing the trace of the three-momentum:

π = πabqab

= −2
√
qK.

(4.110)

10For details on the spatial covariant derivative consult Appendix A.2.
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Then we solve for K using the above equation:

K = − π

2
√
q
. (4.111)

Next we solve for Kab using (4.109) to get:

Kab =
1
√
q

[πab −
π

2
qab]. (4.112)

We recall from (4.107) that:

Kab =
1

2N
[q̇ab − 2D(aNb)]. (4.113)

By equating the two equations above, we find the velocity in terms of the

phase-space variables to be:

q̇ab =
2N
√
q

(πab −
π

2
qab) + 2D(bNa). (4.114)

The Lagrangian density in terms of the phase-space variables is:

L̄GR = N
√
q(3)R +

Nπabπab√
q
− Nπ2

2
√
q
. (4.115)

We next compute for the Hamiltonian density:

H̄GR = NHGR +NaCGR
a (4.116)

96



where

HGR = −√q(3)R +
πabπ

ab

√
q
− π2

2
√
q

(4.117)

and

CGR
a = −2Dbπ

b
a. (4.118)

The canonical action for General Relativity is:

SGRC =

∫
dt

∫
Σt

d3x[πabq̇ab −NHGR −NaCGR
a ]. (4.119)

We can now vary the action with respect to the metric functions. Vary the

action with respect to N to get HGR ≈ 0; this is the Hamiltonian constraint.

Do the same with Na to get CGR
a ≈ 0; that is called the diffeomorphism

constraint. Both, the Hamiltonian and diffeomorphism constraints, are first-

class constraints [15]. Therefore the total Hamiltonian is constrained to zero.

We will find the equations of motion for the phase-space variables (qab, π
ab)

shortly.

It is instructive to count the degrees of freedom in phase-space. We have

a combined 12 degrees of freedom in qab and πab. There are 4 first class

constraints that come with 4 gauge choices. These reduce the degrees of

freedom in the theory to 12 − 4 − 4 = 4 . Therefore the theory has 4

gravitational degrees of freedom in phase-space.
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4.6 The Canonical Dust-Time Gauge

4.6.1 Action and Hamiltonian Theory

We consider the action of General Relativity, coupled to a massive,

pressure-less and time-like dust [14]:

S =

∫
d4x
√
−gR− 1

2

∫
d4x
√
−gm(gab∂aφ∂bφ+ 1). (4.120)

The second action is that of dust which is represented by the scalar field φ.

The function m(xa) represents the mass density of dust; it also enforces the

gradient of the field to be timelike. We check this by varying the action with

respect to m and extremizing it:

δS

δm
= 0

gab∂aφ∂bφ+ 1 = 0

gab∂aφ∂bφ = −1.

(4.121)

In Section 3.1.1 we discussed that dust represents matter that does not in-

teract with other matter. Therefore the action in equation (4.120) represents

a theory of gravity with matter that has zero pressure.

We use the ADM foliation to derive the Hamiltonian formulation of this

98



system. The Lagrangian density is:

L̄D = −
N
√
qm

2

[
1− φ̇2

N2
+

2φ̇Na∂aφ

N2
+ qab∂aφ∂bφ−

NaN b∂aφ∂bφ

N2

]
.

(4.122)

The momentum pφ is calculated via the prescription:

pφ =
∂L̄D

∂φ̇

=
m
√
q

N
[φ̇−Na∂aφ].

(4.123)

We invert to get φ̇ in terms of the phase-space variables.

φ̇ =
Npφ√
qm

+Na∂aφ. (4.124)

The Lagrangian density in terms of the canonical variables is:

L̄D = −
N
√
qm

2

[
1−

p2
φ

qm2
+ qab∂aφ∂bφ

]
. (4.125)

The Hamiltonian density is:

H̄D =
N

2

[
p2
φ

m
√
q

+m
√
q(qab∂aφ∂bφ+ 1)

]
+Napφ∂aφ. (4.126)
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The canonical action for the gravity-dust system is:

SC =

∫
dt

∫
Σt

d3x[πabq̇ab + pφφ̇−N(HGR +HD)−Na(CGR
a + CD

a )]

(4.127)

where

HD =
1

2
[
p2
φ

m
√
q

+m
√
q(qab∂aφ∂bφ+ 1)] (4.128)

and

CD
a = pφ∂aφ. (4.129)

HGR and CGR
a have been calculated in the previous section. Our Hamiltonian

constraint is:

HGR +HD ≈ 0 (4.130)

and our diffeomorphism constraint is:

CGR
a + CD

a ≈ 0. (4.131)

We vary the action with respect to m and extremize it to find:

m = ± pφ√
q(qab∂aφ∂bφ+ 1)

. (4.132)

We use this expression to express our theory without m. As a result HD

becomes:

HD = ±pφ
√
qab∂aφ∂bφ+ 1. (4.133)
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Finally we count the degrees of freedom (in phase-space) in the theory.

There are:

1. 6 degrees of freedom in qab and πab each.

2. 1 degree of freedom in φ and pφ each. The total number of degrees of

freedom is therefore 14.

3. 3 first-class constraints in the diffeomorphism constraint and one in

Hamiltonian constraint. The total number of first-class constraints is

4.

4. To solve the 4 first-class constraints we pick 4 gauges.

5. The remaining degrees of freedom are 14 − 8 = 6. Recall from the

previous section that 4 of these remaining degrees of freedom are grav-

itational. Therefore the other 2 are scalar.

4.6.2 Dust-Time Gauge

In this subsection we solve the Hamiltonian constraint by picking the

dust-time gauge. The dust-time gauge is defined to “equate physical time

with level values of the scalar field” i.e [12]:

λ ≡ φ− t ≈ 0. (4.134)
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It is checked that the gauge is second-class with the Hamiltonian constraint:

[λ,H]PB = [φ− t,HD +HGR]PB

= [φ,HD]PB

= ±[φ, pφ
√
qab∂aφ∂bφ+ 1]PB

6= 0

(4.135)

where we have substituted (4.133) in going from the second to the third line.

Since the above is not zero the dust-time gauge is second-class and hence can

be used to solve the Hamiltonian constraint.

As a consequence of picking the dust-time gauge we note the following

simplifications:

1. Equation (4.132) for m becomes:

m = ± pφ√
q
. (4.136)

This is because in the dust-time gauge:

qab∂aφ∂bφ = qab∂at∂bt

= 0.

(4.137)

2. By extension equation (4.133) for HD also becomes simpler:

HD = ±pφ. (4.138)
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3. Lastly the diffeomorphism constraint for dust vanishes:

CD
a = pφ∂aφ

= 0.

(4.139)

We specify that the gauge should be preserved under evolution:

φ ≈ t

φ̇ ≈ 1.

(4.140)

We write Hamilton’s equation for φ̇ and enforce the condition above:

φ̇ =

[
φ,

∫
Σt

d3x(NH +NaCa)

]
PB

≈ 1. (4.141)

This simplifies to:

[
φ,

∫
Σt

d3x(NHD)

]
PB

≈ 1[
φ,

∫
Σt

d3x(Npφ)

]
PB

≈ ±1

(4.142)

where we have used equation (4.138) in going from the first line to the second.

The lapse is11:

N = ±1. (4.143)

We choose N = 1 to indicate forward evolution in time. This fixes HD = pφ.

11Since we have solved the Poisson Brackets we can replace the ≈ by a strong equality
=.
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Consequently the ADM metric in the dust time gauge is:

ds2 = −dt2 + qab(dx
a +Nadt)(dxb +N bdt). (4.144)

We now solve the Hamiltonian constraint to get:

HD +HGR = 0

pφ = −HGR.

(4.145)

The canonical action thus becomes:

SC =

∫
dt

∫
Σt

d3x[πabq̇ab −HGR −NaCGR
a ] (4.146)

with the total Hamiltonian not constrained to be zero anymore.

Hamilton’s equations are:

q̇ab =

[
qab,

∫
d3x[HGR +NaCGR

a ]

]
PB

π̇ab =

[
πab,

∫
d3x[HGR +NaCGR

a ]

]
PB

.

(4.147)

To find the evolution equations for the phase-space variables we will identify

where the variation will act and list the corresponding results.

1. The first terms that shall be checked is the inverse metric qab:

δ(qab) = −qacqbdδ(qbc). (4.148)
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2. The square root of the determinant becomes:

δ(
√
q) =

√
qqabδ(qab)

2
. (4.149)

3. For the Christoffel symbol, the variation looks like:

δ(Γabc) =
qad

2
[Db(δqcd) +Dc(δqbd)−Dd(δqcb)]. (4.150)

4. The Ricci tensor when varied gives:

δ(Rab) = −Db(δΓ
d
da) +Dd(δΓ

d
ab). (4.151)

This is the Palatini Identity [1].

5. And now we can check for the variation of the Ricci scalar:

δR = Rab(δq
ab) + qab(δRab). (4.152)

6. The contraction of the momentum with itself, when varied gives:

δ(πabπab) = 2[πab(δπ
ab) + πcbπ

ab(δqac)]. (4.153)

7. Varying the trace of the momentum gives:

δ(π) = qab(δπ
ab) + πab(δqab). (4.154)
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8. Also for book-keeping, it becomes convenient to check for the following:

δπba = πbc(δqac) + qac(δπ
bc). (4.155)

From here, it is a matter of varying the action, substituting for the variation of

different terms and extremizing the action to get the Einstein field equations

in the canonical dust-time gauge. The evolution equations in the canonical

dust-time gauge are:

q̇ab =
2
√
q
πab −

πqab√
q

+ 2D(bNa) (4.156)

π̇ab =
√
q(

(3)Rqab

2
−(3) Rab) +

qab

2
√
q

(πcdπcd −
π2

2
)

− 2
√
q

(πadπ
bd − ππab

2
)− 2πd(bDdN

a) +Dd(π
abNd).

(4.157)

The diffeormorphism constraint is:

Dbπ
ab = 0. (4.158)

4.7 Summary

The Hamiltonian formalism was introduced for finite degrees of freedom.

In doing the Hamiltonian formulation of the parameterized particle it was

found that the Hamiltonian was zero. This motivated the generalization of

the Hamiltonian formulation to include constraints. We identified first-class
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constraints as particularly important as they were generators of gauge trans-

formations. We studied another time reparameterization invariant theory

and learned that picking a time gauge and solving the Hamiltonian con-

straint leads to a physical Hamiltonian.

We next reviewed fields and noted that they have infinite degrees of free-

dom. Since the Hamiltonian formulation was introduced for finite degrees of

freedom, we generalized it to include fields. Following that we derived the

Hamiltonian formulation of a scalar field on a curved background. We used

the ADM decomposition of spacetime to express our ten metric functions.

We found that for Minkowski spacetime the dynamics of the scalar field were

identical to the propagation equations of gravitational waves. We found a

similar result for the FLRW universe. Following this we studied the Hamil-

tonian formulation of GR and noted that the Hamiltonian is constrained to

vanish.

We then considered the action of gravity with a pressure-less and time-

like dust and derived the Hamiltonian formulation of this system. We solved

the Hamiltonian constraint of this system with the gauge that dust is time.

In enforcing this gauge the lapse got fixed to 1 and the Hamiltonian was

no longer constrained to vanish. We concluded this section by writing the

equations of motion of the three-metric and the three-momentum along with

the diffeomorphism constraint in the dust-time gauge.
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Chapter 5

Linearized Hamiltonian Theory

in Cosmology with Dust-Time

In this chapter we start by specifying the three-metric, its conjugate mo-

mentum and the shift in terms of backgrounds and perturbations. In Section

5.1 we derive the evolution equations and the diffeomorphism constraint to

linear order in the perturbations. In Section 5.2 the perturbations are ex-

pressed in terms of spatial Fourier modes. In Section 5.3 the results are

decomposed into scalar, vector and tensor components. In Section 5.4 we fix

gauges, solve the first-class constraints and analyze our results.

This method has been tested in a Minkowski spacetime with the result

that the graviton modes satisfy the wave equation on a flat background [12].

The new research conducted for this thesis is an application of this method

to FLRW cosmology. This chapter contains our calculations, findings and
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analysis.

5.1 Perturbed Equations of Motion

5.1.1 Hamiltonian Dynamics of FLRW Cosmology

Recall from Section 4.5 that the phase-space of GR contains the canonical

pair qab and πab. Also recall that in Section 4.4 we had discussed the metric

of FLRW cosmology in terms of the ADM variables. We had set Na = 0 and

qab(t) = a2(t)eab
1. The time-dependence in qab comes from the scale factor.

Therefore the scale factor is the configuration variable in FLRW cosmology.

The symplectic term in the canonical action should be:

∫
d3xpȧ (5.1)

where p is the momentum conjugate to a. The momentum p should come

from πab. We consider the simplest form πab can take:

πab(t) = X(t)eab (5.2)

1In the dust-time gauge the lapse is fixed to 1
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where X is an unknown variable. We will use the fact that πabq̇ab from

equation (4.146) reduces to pȧ to calculate the form of X.

πabq̇ab = Xeab2aȧeab

= (6aX)ȧ.

(5.3)

The term in brackets should be p. Therefore the momentum conjugate to qab

is:

πab(t) =
p(t)

6a(t)
eab. (5.4)

We now calculate the Hamiltonian dynamics of FLRW cosmology. Using

equation (4.117) we find that the Hamiltonian is:

HGR = − p2

24a
. (5.5)

It leads to the following equations of motion for a and p.

ȧ = − p

12a
(5.6)

ṗ = − p2

24a2
. (5.7)

The decoupled equation for a is:

ä = − ȧ
2

2a
. (5.8)
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The solution for a(t) is:

2

3
a

3
2 − C1t− C2 = 0 (5.9)

where C1 and C2 are constants of integration2. If we set C1 = 0 then (5.9)

leads to a constant scale factor:

a(t) = C
2
3 (5.10)

where C is another constant. If the scale factor is a constant a0, then the

three-metric is:

qab = a2
0dx

2 + a2
0dy

2 + a2
0dz

2. (5.11)

If we make a coordinate transformation of the type dx̃a = a0dx
a, then the

three-metric becomes:

qab = eabdx̃
adx̃b. (5.12)

This is the Euclidean three-metric. Also if the scale factor is a constant then

ȧ = p = 0. Therefore the solution in (5.10) implies that the universe is static

and does not expand. This is not a solution of interest. However, if we set

C2 = 0 then (5.9) leads to:

a(t) = Dt
2
3 (5.13)

where D is a constant.

2I used Maple to calculate this.
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5.1.2 First Order Perturbation Equations of Motion

We specify the full perturbed quantities as:

qab(t, ~x) = a(t)2eab + hab(t, ~x) (5.14)

πab(t, ~x) =
p(t)

6a(t)
eab + pab(t, ~x) (5.15)

Na(t, ~x) = ξa(t, ~x). (5.16)

In these equations hab is the perturbation to the three-metric, pab is that to

the three-momentum and ξa is the perturbation to the shift. We note that

the perturbation to the three metric in equation (5.14) is not multiplied by

the scale factor whereas in standard cosmological perturbation theory the

tensor perturbation was multiplied by a2; see equation (3.17). This is by

design and will be justified shortly. Note that if we want to match results

from the two approaches the rescaling should be accounted for at some stage.

We substitute the full qab, π
ab and Na in the equations of motion and

diffeomorphism constraint. The result is truncated at linear order in the

perturbations. The evolution equations for the perturbations to linear order

are:

ḣab = 2aeacebdp
cd − apcdecdeab +

p

6a2
hab −

p

6a2
ecdhcdeab + 2a2ec(aξ

c
,b) (5.17)
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ṗab = − p

6a2
pab +

p

12a2
ecdp

cdeab − 5p2

144a5
eacebdhcd

+
p2

72a5
ecdhcde

ab − p

3a
ec(aξb),c +

p

6a
eabξc,c

+
eij

2a3
(
eabecd

2
− eacebd)(hdj,ci + hci,dj − hcd,ij − hij,cd)

(5.18)

and the linearized diffeomorphism constraint is:

pab,b +
p

12a3
(eadebc + eacebd)(hdb,c + hcd,b − hcb,d) = 0. (5.19)

For details on these calculations please consult Appendix A.3.

5.2 Spatially Fourier Transformed Results

Recall from Section 3.3.1 that the spatial Fourier transform allows us to

view a function of space as plane waves along with their coefficients. That

permits the required decomposition into scalar, vector and tensor (SVT)

components3,4. These SVT components are what we intend to analyze even-

tually.

We expand the perturbations in modes of flat space Laplacian (plane

3In this chapter we only discuss decomposition of three-tensors in a helicity basis.
4Hereon we do not use the helicity prefix in this Chapter. When discussing - for

example - the scalar perturbations, it should be understood that the reference is to helicity
scalars.
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waves) as:

hab(t, ~x) =

∫
d3k[ei

~k.~xh̃ab(t,~k)]

pab(t, ~x) =

∫
d3k[ei

~k.~xp̃ab(t,~k)]

ξa(t, ~x) =

∫
d3k[ei

~k.~xξ̃a(t,~k)].

(5.20)

We substitute the above wherever there is a perturbation term. If there is a

spatial derivative acting on the perturbation then it will pull down a factor

of ika and a time derivative will act on the coefficient of the plane wave.

Peeling off the common factors then gives the spatial Fourier transform of

the equations of motion for the perturbations. These equations are:

˙̃hab = 2aeacebdp̃
cd− ap̃cdecdeab +

p

6a2
h̃ab−

p

6a2
ecdh̃cdeab + 2ia2ec(aξ̃

ckb) (5.21)

˙̃pab = − p

6a2
p̃ab +

p

12a2
ecdp̃

cdeab − 5p2

144a5
eacebdh̃cd

+
p2

72a5
ecdh̃cde

ab − i p
3a
ec(aξ̃b)kc + i

p

6a
eabξ̃ckc

− eij

2a3
(
eabecd

2
− eacebd)(h̃djkcki + h̃cikdkj − h̃cdkikj − h̃ijkckd).

(5.22)

The spatial Fourier transform of the linearized diffeomorphism constraint is:

p̃abkb +
p

12a3
(eadebc + eacebd)(h̃dbkc + h̃cdkb − h̃cbkd) = 0. (5.23)
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5.3 Decomposing the Perturbations

5.3.1 The Basis Elements

In the three-dimensional Fourier Space we have symmetric three-dimensional

matrices h̃ab and p̃ab. A symmetric three-dimensional matrix has six indepen-

dent entries; we therefore need an orthonormal set of six symmetric matrices

to serve as a basis. There are many such basis sets we can construct. What

is needed is a basis that gives a certain meaning to the components. For

example we found in Chapter 2 that the graviton modes propagate via dis-

turbances perpendicular to the plane of propagation and that they are also

traceless. Therefore to extract these modes, one must decompose the equa-

tions using basis elements that are traceless and transverse.

The construction of this basis was actually started in Section 3.3.2. We

want for our basis to be time-independent. Since ea± and ea3 are time-

independent our basis is automatically time-independent. We also want our

basis to be orthonormal. However we first need a definition for orthonormal-

ity. An operation is required that multiplies two matrices and takes out a

number from the product. Possible candidates are the trace and the deter-

minant; this project will use the trace to define orthonormality as such5.

M I
abM

ab
J = δIJ . (5.24)

5Recall we used a similar procedure to construct a basis in Chapter 2. We used that
basis to decompose the traceless transverse metric perturbation.
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The following M matrices are used for the SVT decomposition:

Mab
1 =

1√
3

(2e
(a
+ e

b)
− + ea3e

b
3) (5.25)

Mab
2 =

√
3

2
ea3e

b
3 −

Mab
1√
2
. (5.26)

These are the scalars.

Mab
3 =

i√
2

(ea−e
b
− − ea+eb+) (5.27)

Mab
4 =

1√
2

(ea−e
b
− + ea+e

b
+) (5.28)

are the tensors.

Mab
5 = i(e

(a
− e

b)
3 − e

(a
+ e

b)
3 ) (5.29)

Mab
6 = e

(a
− e

b)
3 + e

(a
+ e

b)
3 (5.30)

are the vectors.

To get M I
ab from Mab

I use the Euclidean metric since one is performing the

decomposition in a flat space. In addition to that, all M matrices except for

M1 are trace-free i.e they satisfy:

Mab
I eab = 0 (5.31)

for I = 2...6.
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For the tensor matrices to be transverse they must satisfy:

kaM
ab = 0 (5.32)

and it can be checked that both Mab
3 and Mab

4 are transverse. Vector matrices

are transverse if:

kakbM
ab = 0. (5.33)

It can be checked that both vector basis are also transverse6.

5.3.2 Scalar, Vector and Tensor Equations

We decompose the perturbations in this basis as such:

h̃ab(t,~k) = hI(t,~k)M I
ab (5.34)

p̃ab(t,~k) = pI(t,~k)Mab
I (5.35)

ξ̃a(t,~k) = ξ1(t,~k)ea1 + ξ2(t,~k)ea2 + ξ||(t,~k)ea3 (5.36)

where ξ1 and ξ2 are the transverse components of the shift perturbation and

ξ|| is the parallel part and hI and pI are scalar fields associated with different

helicity basis. Under this decomposition and definition of orthonormality:

∫
d3k[p̃ab ˙̃hab] =

∫
d3k[pI ḣI ]. (5.37)

6These conditions were also discussed in Chapter 3
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This defines six pairs of canonically conjugate degrees of freedom (hI , p
I).

The scalar mode equations are:

ḣ1 = −ap1 −
p

3a2
h1 +

2ia2

√
3
|k|ξ|| (5.38)

ḣ2 = 2ap2 +
p

6a2
h2 + 2ia2

√
2

3
|k|ξ|| (5.39)

ṗ1 =
|k|2

3a3
h1 −

|k|2

3
√

2a3
h2 +

p

12a2
p1 +

p2

144a5
h1 +

i|k|p
6
√

3a
ξ|| (5.40)

ṗ2 = − |k|
2

3
√

2a3
h1 +

|k|2

6a3
h2 −

p

6a2
p2 −

5p2

144a5
h2 −

i|k|p
3a

√
2

3
ξ||. (5.41)

The tensor mode equations are:

ḣI = 2apI +
p

6a2
hI (5.42)

ṗI = −|k|
2

2a3
hI −

p

6a2
pI −

5p2

144a5
hI (5.43)

where I = 3, 4. The vector mode equations are:

ḣ5 = 2ap5 +
p

6a2
h5 + i

√
2a2|k|2ξ2 (5.44)

ḣ6 = 2ap6 +
p

6a2
h6 + i

√
2a2|k|2ξ1 (5.45)
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ṗ5 = − p

6a2
p5 −

ip|k|
3
√

2a
ξ2 −

5p2

144a5
h5 (5.46)

ṗ6 = − p

6a2
p6 −

ip|k|
3
√

2a
ξ1 −

5p2

144a5
h6. (5.47)

The longitudinal part of the linearized diffeomorphism constraint is:

6a3(p1 +
√

2p2) + p(h1 +
√

2h2) = 0. (5.48)

The transverse parts are:

6a3pJ + phJ = 0 (5.49)

where J = 5, 6. The Maple code used to compute these equations has been

provided in Appendix A.4.

5.3.3 Rescaling of Scalar, Vector and Tensor Modes

In standard cosmological perturbation theory, the tensor metric pertur-

bations are defined as:

ds2 = −dt2 + a2(eab + fab)dx
adxb (5.50)

where a2fab is the perturbation. However, this project uses the line element:

ds2 = −dt2 + (a2eab + hab)dx
adxb. (5.51)
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We equate the two tensor perturbations:

hab = a2fab. (5.52)

We should account for this difference if we are to match results from the two

approaches.

1. We do not use a2fab because that introduces unnecessary terms in the

second order symplectic term i.e
∫
d3xḣabp

ab. This is important be-

cause the second order symplectic term is responsible for allowing the

decoupling of the SVT canonically conjugate variables.

2. We may also not introduce the re-scaling by multiplying the basis by

a(t)2. This is because the basis will then become time-dependent.

3. This re-scaling must be accounted for as such:

hI(t)→ a2fI(t). (5.53)

Therefore, the re-scaling is introduced in the scalar field part of the

perturbation.

5.4 Gauge-Fixing and Solving of Constraints

In this section gauges will be fixed and the constraints will be solved.

There is a freedom to chose and impose three gauges.
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5.4.1 Solving the Transverse Linearized Diffeomorphism

Constraint

The gauges picked should be second-class with the linearized diffeomor-

phism constraint. We pick the gauges:

hJ = 0 (5.54)

where J = 5, 6. These are second-class with equations (5.49). Note that

we cannot use the tensor and scalar modes for gauge fixing. This is be-

cause these gauge choices are not second-class with the transverse linearized

diffeomorphism constraint. Solving equation (5.49) gives:

pJ = 0 (5.55)

where J = 5, 6. We specify that the gauge is preserved under evolution i.e:

hJ = ḣJ = 0. (5.56)

This leads to ξ1 = ξ2 = 0 from equations (5.44) till (5.47). Therefore the

vector modes and the transverse components of the shift perturbation are

zero.
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5.4.2 Solving the Longitudinal Linearized Diffeomor-

phism Constraint

Now one gauge remains to be fixed. Pick that to be:

h2 = 0. (5.57)

This is second-class with the longitudinal linearized diffeomorphism con-

straint in equation (5.48). Note that we cannot use the vector and tensor

modes for gauge fixing7. This is because these gauge choices are not second-

class with the longitudinal linearized diffeomorphism constraint. Solving the

constraint gives:

p2 = − p1√
2
− p

6
√

2a3
h1. (5.58)

We specify that this gauge is preserved in time. Therefore:

ḣ2 = 0. (5.59)

Substitute the gauge in equation (5.39) for ḣ2 and solve for ξ|| to get:

ξ|| = −
i
√

3

2a|k|
p1 −

−ip
4
√

3a4|k|
h1. (5.60)

7Given the flow of our calculations the option of using the vector modes for gauge-fixing
is not even available. This is because we have already eliminated them in the previous
Subsection.
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In a decoupled form the scalar mode equation is:

ḧ1 = H2h1. (5.61)

Upon the allowed re-scaling, h1 = a2f1, the equation above becomes:

f̈1 = −4Hḟ1. (5.62)

Notice the absence of k in the equation because of which the equation is only

dependent on time. It is a useful exercise to reason back from this obser-

vation. No k implies that there were no partial derivatives. Lack of partial

derivatives implies that there was no notion of connecting different points in

space. This leads to the conclusion that the scalar mode is ultralocal: that

it is localized fully.

We explore further by substituting for different scale factors. We solve for

f1 and analyze.

1. We start with an exponentially growing universe i.e a(t) = eλt where λ

is some constant. The solution is:

f1(t) = C1 + C2e
−4λt (5.63)

where C1 and C2 are constants of integration. Therefore for an expo-

nential scale factor the scalar mode has a decaying mode and a constant

mode.
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2. A power-law obeying scale factor a(t) = tn, where n is a positive num-

ber (greater than 1
4
) is an interesting case also. In this scenario the

scalar mode equation becomes:

f1(t) = D1 +D2t
−4n+1 (5.64)

where D1 and D2 are constants of integration. In this case we also get

a constant mode and a decaying mode. If we set n = 2
3

we get the scale

factor we found in equation (5.13). In that case we get:

f1(t) = D1 +D2t
− 5

3 . (5.65)

5.4.3 The Remaining Degrees of Freedom

Now all the constraints have been solved. The remaining degrees of

freedom in phase space are the canonical pairs (h1, p1), (h3, p3) and (h4, p4).

We now analyze the latter two. For these modes the equations of motion are

(5.42) and (5.43); in decoupled form they are:

ḧI = −|k|
2

a2
hI +HḣI −H2hI (5.66)
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where I = 3, 4. Upon the allowed rescaling we recover the graviton equation

in a the FLRW universe:

f̈I = −k
2

a2
fI − 3HḟI . (5.67)

This matches equation (3.70) which was obtained for helicity tensors via the

standard approach.

5.5 Summary

Chapter 4 was ended after obtaining the machinery that will allow one

to compute for the spatial and temporal behavior of any space-time. This

chapter was started by specifying the three-metric, three-momentum and

shift for cosmology; these quantities were prescribed with backgrounds and

perturbations. The evolution equations and the diffeomorphism constraints

were derived to linear order. A spatial Fourier transform was performed on

the results and a basis was specified that decomposed these results into their

SVT components. This basis was orthonormal and did not depend on time

and the Fourier mode. Following that gauges were picked and the first-class

constraints were solved. As predicted in the previous chapter 6 degrees of

freedom remained: 4 in the tensor modes and 2 in the scalar modes.

We found an ultralocal scalar mode. Under two different specifications for

the scale factor it was seen that the scalar mode had a constant term and a
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decaying mode. The vector modes vanished. Finally the tensor modes gave

the graviton equations.
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Chapter 6

Summary and Conclusions

We now give a brief summary of the main results from each section.

In Chapter 2 we used perturbation theory in GR to study weak gravita-

tional fields in Minkowski spacetime. We found that we have gauge freedom

in the theory and explored two different gauge choices to solve the Einstein

equations. Both routes gave a similar result: two degrees of freedom in the

metric perturbation that propagated as waves. These two propagating de-

grees of freedom were in the traceless, transverse and spatial part of the

metric perturbations and they represented gravitational waves.

In Chapter 3 we studied perturbations in the FLRW universe. We found

the corresponding propagating degrees of freedom from the traceless and

transverse part of the tensor perturbation. It was also seen that the vector

perturbations in cosmology vanish and that the scalar perturbations exhibit

non-trivial dynamics.
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In Chapter 4 we used the Hamiltonian formulation to study scalar fields,

GR and a system of GR and dust. We found that the dynamics of a scalar

field in a Minkowski spacetime were identical to the gravitational wave equa-

tion in flat spacetime. We found a similar relationship between the propa-

gation behavior of a scalar field and gravitational waves in the homogeneous

and isotropic universe. This is meaningful because we can represent the prop-

agating gravity degrees of freedom in the metric using scalar fields. We next

studied GR in its Hamiltonian form and found that the Hamiltonian in GR

vanishes. We then considered a system of GR and a pressure-less, timelike,

massive dust in its Hamiltonian form. We picked the gauge that dust is time

and solved the Hamiltonian constraint to get a physical Hamiltonian. This

system can be used to study perturbation theory in GR.

In Chapter 5 we studied cosmological perturbation theory in this Hamil-

tonian framework. We found an ultralocal scalar mode. Next we considered

the scale factors for a universe that is exponentially growing and a universe

that expands according to the power law. It was found that in both cases

the scalar mode had a decaying part and a constant part, the latter which

we could set to zero. It was checked that the vector modes vanish. Lastly we

found that the traceless, transverse tensor perturbation equations were the

gravitational wave equation.

There are two purposes of studying cosmological perturbation theory in

this new framework:

1. The dust-time model is used for research in quantum gravity. Any
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framework that operates in this regime should produce the known re-

sults in the classical realm. Cosmology is a good test-bed because the

result we expect (of the propagation behavior of gravitational waves)

is known and also because the symmetries of homogeneity and isotropy

do not make the calculations overly complex.

2. There is the intrigue of what happens to the scalar mode once we use

the dust field to fix the time gauge. The scalar degrees of freedom

consequently reside in the three-metric and its conjugate momentum.

We find that when we use the model to study cosmological perturbation

theory, these scalar modes manifest themselves as ultralocal degrees of

freedom that are not important at late times.

To ask what research can be done next, it is enlightening to review that

cosmological perturbation theory allows us to track how small perturbations

in the universe evolve in space and time. We can next explore how these

perturbations relate to the anisotropies of the CMB. We could also question

the role these fluctuations played in the formation of galaxies. To answer this

we will have to add to our model a scalar field that represents matter. Then

we will be able to study interactions between the gravitational and matter

degrees of freedom.
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Appendix A

Appendix

A.1 Second-Class Constraints

The first-class constraints are of interest and second-class constraints have

to be removed from the theory. To see why, a small foray into quantization

is required. To quantize a theory:

1. Take the case where all the constraints are first-class.

2. Promote the canonical variables to operators. We recall that the basic

Poisson Bracket in the classical theory is:

[x, p]PB = 1. (A.1)

This Poisson Bracket from the classical theory should be promoted to
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the commutator relation in quantum theory:

[x, p] = i (A.2)

where it is understood that the position and momentum are now oper-

ators.

3. To find how the system evolves in time we use the time-dependent

Schrödinger equation:

i~
dψ

dt
= Hψ (A.3)

where ψ is the state we are examining and H is the Hamiltonian.

4. Impose supplementary conditions on ψ as such:

φjψ = 0. (A.4)

It is a useful exercise to examine the consistency of the last assumption more

closely.

φj′φjψ = 0

φjφj′ψ = 0.

(A.5)

Subtracting one from the other gives:

[φj′φj − φj′φj]ψ = 0

[φj′ , φj]ψ = 0

(A.6)
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where [φj′ , φj] is the commutator. This second condition on ψ is necessary

for consistency. The commutator should satisfy the relation:

[φj, φj′ ] = cjj′j′′φj′′ (A.7)

where cjj′j′′ is a constant. But this corresponds to the Poisson Bracket re-

lation for first-class constraints from the classical theory. So really one has

just the initial supplementary condition in equation (A.4) and the relation

above naturally follows from the definition of first-class constraints.

This is where the second-class constraints are problematic. As a particular

example assume one has two second-class constraints q1 ≈ 0 and p1 ≈ 0 in

the classical theory. Recall in classical theory the Poisson Bracket of two

second-class constraints is non-zero and therefore we cannot write the right

hand side as a linear combination of constraints. Their commutator follows

a similar relation and because of this we cannot write:

[q1, p1]ψ = 0 (A.8)

in the quantum theory. This is how a second-class constraint ruins the con-

sistency for the supplementary conditions in quantum theory. Therefore they

are eliminated and the theory is expressed in terms of the remaining first-class

constraints.

To eliminate these second-class constraints we could take q1 and p1 to be

identically zero and set up the theory in terms of the degrees of freedom with
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n = 2, 3...N . The Poisson Bracket for two functions f(qn, pn) and g(qn, pn)

is defined as:

[f, g]PB =
∂f

∂qn

∂g

∂pn
− ∂f

∂pn

∂g

∂qn
. (A.9)

for n = 2, 3...N . We now consider a more general case where the second-class

constraints in the theory are p1 ≈ 0 and q1 ≈ f(qr, pr) where r = 2, 3...N . In

this case we could drop out the number 1 degree of freedom if we substitute

f(qr, pr) for q1 in the Hamiltonian and all other constraints [3]. This allows

us to remove the second-class constraints and set up the quantum theory in

terms of the other degrees of freedom.

A.2 The ADM Foliation of Spacetime

ADM stands for Arnowitt, Deser and Misner. They postulated a separa-

tion of spacetime into leaves of space and a parameter time. This separation

of space from time, which is also referred to as foliation, facilitated the Hamil-

tonian formulation of General Relativity. The ADM foliation of spacetime is

also used to derive the Hamiltonian formulation of other fields on a curved

background. In this Appendix section we discuss the ADM foliation and how

we can do calculus on the surface of constant t [10] [15]:

1. We separate spacetime into surfaces Σ and a parameter t that is real.

We call t a time function and impose that t = constant gives the

surfaces Σt. These surfaces of constant t are assumed to be spacelike.
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We also impose that there exists a smooth map with a smooth inverse

between all Σt.

2. To introduce evolution we define a timelike vector field ta that satisfies

ta(∇t)a = 1 and defines the same point in space at a different instants

of time. Thus evolution is given by the Lie derivative with respect to

ta. For example the time derivative of a symmetric tensor pab is:

ṗab = £tpab

= tcpab;c + 2pc(at
c
;b).

(A.10)

3. We then introduce a unit timelike covariant normal to the spacelike

surface which we call na. Its contravariant form is given by na = gabnb.

Since na is a unit timelike vector

nana = −1. (A.11)

4. We define the projection operator to the tangent space of the spacelike

surface Σt as:

qab = δab + nanb (A.12)

where δab is the Kronecker Delta. We may view tensor P a
b to be on the

tangent space to Σt if P a
b satisfies the following equation:

P a
b = qac q

d
bP

c
d . (A.13)
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5. By projecting the full metric gab onto Σt we get the metric induced on

Σt; we call that qab.

qab =qcaq
d
bgcd

=gab + nanb.

(A.14)

6. We prescribe the covariant derivative on Σt. We call it Da and require

that:

(a) It should take the covariant derivatives along all directions except

for that of the normal. This is ensured by projecting the full

covariant derivative on Σt as qac∇a.

(b) The resultant quantity of this covariant differentiation should lie

on the tangent space to Σt. Therefore the covariant derivative of

a spacetime tensor Qa
b on Σt should give:

DcQ
a
b = qauq

v
b q
f
c∇fQ

u
v (A.15)

where it can be checked that the resultant quantity is on the tan-

gent plane to Σt.

(c) Da should be compatible with qab i.e:

Daqbc = 0. (A.16)
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(d) It should obey linearity and Leibnitz rule i.e for any two abstract

tensors A and B it should respectively satisfy:

D(A+B) = DA+DB

D(AB) = (DA)B + A(DB).

(A.17)

7. We next re-express ta in terms of its components tangential and normal

to Σt. Define the lapse as the projection of ta along the normal:

N = gabt
anb (A.18)

and the shift, Na, as the projection of ta on Σt:

Na = qab t
b. (A.19)

We rewrite ta as:

ta = Nna +Na. (A.20)

Therefore (N,Na) are also indicative of a basis in this structure.
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A.3 Equations of Motion for the Perturba-

tions

One has the perturbed three-metric and the three-momentum:

qab(t, ~x) = a2(t)eab + εhab(t, ~x)

πab(t, ~x) =
p(t)

6a(t)
eab + εpab(t, ~x).

(A.21)

The determinant is:

q = a6. (A.22)

Postulate the inverse metric as such:

qab = Xeab + εY ab. (A.23)

The metric and its inverse satisfy the following relation:

qabq
bc = δca. (A.24)

Substitute (A.23) in the equation above and ignore all terms of second order:

(a2eab + εhab)(Xe
bc + εY bc) = δca

a2Xδac + ε(a2eabY
bc + habXe

bc) = δca

δca(a
2X − 1) + ε(a2eabY

bc + habXe
bc) = 0.

(A.25)
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In the last line we have brought δca on the left hand side. The zeroth order

is satisfied if:

X =
1

a2
(A.26)

and that leaves

a2eabY
bc +

habe
bc

a2
= 0. (A.27)

Solving for Y ab gives:

Y ab = −e
acebd

a4
hcd. (A.28)

The inverse-metric thus becomes:

qab =
eab

a2
− εe

acebd

a4
hcd. (A.29)

For convenience πab is computed next. From here computing the trace of

the momentum and πab does not take much effort:

πab = πacqcb

= (
p

6a
eac + εpac)(a2ecb + εhcb)

=
pa

6
δab + ε(a2ecbp

ac +
p

6a
eachcb).

(A.30)

To find the trace of the momentum make b = a in the equation above:

π =
pa

2
+ ε(a2eacp

ac +
p

6a
eachac). (A.31)

To calculate πab lower one index on πab ; this corresponds to multiplying with
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the three-metric:

πab = πcbqac

= [
pa

6
δcb + ε(a2edbp

cd +
p

6a
ecdhdb)][a

2eac + εhac]

=
pa3

6
eab + ε(a4eacebdp

cd +
pa

3
hab).

(A.32)

The curvature terms are dealt with next and one will start with the

Christoffel symbols:

Γabc =
1

2
(qab,c + qca,b − qcb,a)

=
ε

2
(hab,c + hca,b − hcb,a).

(A.33)

One should at this point, recall that the partial derivatives are spatial because

the metric itself is on the spatial slice; hence the zeroth order term of the

metric will give zero when the partial derivative acts on it. The Christoffel

symbols of second kind can thus be written as:

Γabc =
εead

2a2
(hdb,c + hcd,b − hcb,d). (A.34)

Note that the Christoffel is already of order ε. Therefore terms in curvature

involving products of Christoffels will not exist in linear theory.

By extension, the definition for the Ricci tensor becomes:

Rab = ∂cΓ
c
ab − ∂bΓcca. (A.35)
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This reduces down to:

Rab =
εecd

2a2
(hbd,ac + hac,bd − hab,cd − hcd,ab). (A.36)

To find the Ricci scalar with both indices up multiply twice by inverse-metric

as such:

Rab = qacqbdRcd

=
εeacebdeij

2a6
(hdj,ci + hci,dj − hcd,ij − hij,cd).

(A.37)

The final piece to compute is the three-Ricci scalar which can be found as

such:

R = qcdRcd

=
εecdeij

2a4
(hdj,ci + hci,dj − hcd,ij − hij,cd).

(A.38)

Recall the Einstein field equations in the dust-time gauge. Start with

the one for the three-metric and substitute for the different terms we just

calculated:

q̇ab =
2
√
q

[πab −
πqab

2
] + 2D(aNb)

2aȧeab + εḣab = −p
6
eab

+ ε(2aeacebdp
cd − apcdecdeab +

p

6a2
hab −

p

6a2
ecdhcdeab + 2a2ec(aξ

c
,b)).

(A.39)
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The zeroth order equation of motion can be re-arranged to give:

ȧ = − p

12a
. (A.40)

The equation of motion for the perturbation to linear order is:

ḣab = 2aeacebdp
cd − apcdecdeab +

p

6a2
hab −

p

6a2
ecdhcdeab + 2a2ec(aξ

c
,b). (A.41)

Now for the equation of motion for the momentum.

π̇ab =−√q(Rab −
3Rqab

2
) +

qab

2
√
q

(πcdπ
cd − π2

2
)− 2
√
q

(πacπ
bc − ππab

2
)

+
√
qDc(

πabN c

√
q

)− 2πc(aDcN
b)

(
ṗ

6a
+

p2

72a3
)eab + εṗab =

p2

144a3
eab

+ ε[− p

6a2
pab +

p

12a2
ecdp

cdeab − 5p2

144a5
eacebdhcd

+
p2

72a5
ecdhcde

ab − p

3a
ec(aξb),c +

p

6a
eabξc,c

+
eij

2a3
(
eabecd

2
− eacebd)(hdj,ci + hci,dj − hcd,ij − hij,cd)].

(A.42)

The zeroth order equation of motion can be rearranged to give:

ṗ = − p2

24a2
. (A.43)
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The equation of motion for the perturbation to linear order is:

ṗab = − p

6a2
pab +

p

12a2
ecdp

cdeab − 5p2

144a5
eacebdhcd +

p2

72a5
ecdhcde

ab − p

3a
ec(aξb),c +

p

6a
eabξc,c

+
eij

2a3
(
eabecd

2
− eacebd)(hdj,ci + hci,dj − hcd,ij − hij,cd).

(A.44)

Finally, the diffeormorphism constraint is:

Db(
√
qπab) = 0

pab,b +
p

12a3
(eadebc + eacebd)(hdb,c + hcd,b − hcb,d) = 0.

(A.45)

A.4 Maple Code for the Scalar, Vector, Ten-

sor Decomposition
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(1)(1)

(1.1)(1.1)

> > 
> > 

> > 

restart;
with(Physics):
with(LinearAlgebra):
Setup(mathematicalnotation = true):
Coordinates(X):
Coordinates(X = cartesian):
Setup(dimension=[3,`+`]):

Changing the signature of the tensor spacetime to: C C C 
The dimension and signature of the tensor space are set to: [3, C C C] 

Basic Ingredients
g_[]; #Sets up flat metric for these calculations
e1:=<1,0,0>: #Establishes e1 to be along the x-axis.
e2:=<0,1,0>:
e3:=<0,0,1>: #This is the k unit vector
e_p:= (e1+I*e2)/sqrt(2): #This is the eigenvector - "e plus" - 
of the rotation matrix. 
e_m:= (e1-I*e2)/sqrt(2):
Define(e_1[~mu]=e1); #This defines all vectors with upper 
indices
Define(e_2[~mu]=e2);
Define(e_3[~mu]=e3); 
Define(k[~mu]=e_3[~mu]*k); #This is the full k-vector

Defined objects with tensor properties

Defined objects with tensor properties

Defined objects with tensor properties

Defined objects with tensor properties



(2.2)(2.2)

> > 

(2.1)(2.1)

> > 

M-Matrices
M1:= 1/sqrt(3)* (OuterProductMatrix(e_p,e_m) + 
OuterProductMatrix(e_m,e_p)  + OuterProductMatrix(e3,e3)):
Define(M_1[~mu,~nu] = M1): #This part of the code sets up the M
matrix with upper indices, and displays the same M matrix with 
lower indices; one should notice that they are identical. One 
may check that the prescription is the same as the one given in
equations 5.25-5.30.
M_1[~mu,~nu,Matrix];
M_1[mu,nu,Matrix];

Defined objects with tensor properties

M2:= sqrt(3)/sqrt(2)*OuterProductMatrix(e3,e3) - M1/sqrt(2):
Define(M_2[~mu,~nu] = M2);
M_2[~mu,~nu,Matrix];
M_2[mu,nu,Matrix];

Defined objects with tensor properties



(2.2)(2.2)

> > 

(2.4)(2.4)

(2.3)(2.3)

> > 

M3:=I/sqrt(2)*(OuterProductMatrix(e_m,e_m) - OuterProductMatrix
(e_p,e_p)):
Define(M_3[~mu,~nu] = M3);
M_3[~mu,~nu,Matrix];
M_3[mu,nu,Matrix];

Defined objects with tensor properties

M4:=1/sqrt(2)*(OuterProductMatrix(e_m,e_m) + OuterProductMatrix
(e_p,e_p)):
Define(M_4[~mu,~nu] = M4);
M_4[~mu,~nu,Matrix];
M_4[mu,nu,Matrix];

Defined objects with tensor properties



(2.2)(2.2)

> > 

(2.5)(2.5)

(2.6)(2.6)

(2.4)(2.4)

> > M5:= I/2*(OuterProductMatrix(e_m,e3) + OuterProductMatrix(e3,
e_m) - OuterProductMatrix(e_p,e3) - OuterProductMatrix(e3,e_p))
:
Define(M_5[~mu,~nu] = M5);
M_5[~mu,~nu,Matrix];
M_5[mu,nu,Matrix];

Defined objects with tensor properties

M6:= 1/2*(OuterProductMatrix(e_m,e3) + OuterProductMatrix(e3,
e_m) + OuterProductMatrix(e_p,e3) + OuterProductMatrix(e3,e_p))
;
Define(M_6[~mu,~nu] = M6);
M_6[~mu,~nu,Matrix];
M_6[mu,nu,Matrix];

Defined objects with tensor properties



(2.2)(2.2)

(2.9)(2.9)

(2.6)(2.6)

(2.8)(2.8)

(2.4)(2.4)

> > 

> > 

> > 

> > 

(2.7)(2.7)

#The next part of the code checks orthonormality of the M 
matrices. The SumOverRepeatedIndices command takes the trace of
the matrices being multiplied. This is consistent with the 
definition of orthonormality.
SumOverRepeatedIndices(M_1[~mu,~nu].M_1[mu,nu]);
SumOverRepeatedIndices(M_1[~mu,~nu].M_2[mu,nu]);
SumOverRepeatedIndices(M_1[~mu,~nu].M_3[mu,nu]);
SumOverRepeatedIndices(M_1[~mu,~nu].M_4[mu,nu]);
SumOverRepeatedIndices(M_1[~mu,~nu].M_5[mu,nu]);
SumOverRepeatedIndices(M_1[~mu,~nu].M_6[mu,nu]);

1
0
0
0
0
0

SumOverRepeatedIndices(M_2[~mu,~nu].M_1[mu,nu]);
SumOverRepeatedIndices(M_2[~mu,~nu].M_2[mu,nu]);
SumOverRepeatedIndices(M_2[~mu,~nu].M_3[mu,nu]);
SumOverRepeatedIndices(M_2[~mu,~nu].M_4[mu,nu]);
SumOverRepeatedIndices(M_2[~mu,~nu].M_5[mu,nu]);
SumOverRepeatedIndices(M_2[~mu,~nu].M_6[mu,nu]);

0
1
0
0
0
0

SumOverRepeatedIndices(M_3[~mu,~nu].M_1[mu,nu]);
SumOverRepeatedIndices(M_3[~mu,~nu].M_2[mu,nu]);
SumOverRepeatedIndices(M_3[~mu,~nu].M_3[mu,nu]);
SumOverRepeatedIndices(M_3[~mu,~nu].M_4[mu,nu]);



> > 

> > 
(2.10)(2.10)

> > 

(2.12)(2.12)

(2.2)(2.2)

> > 

(2.9)(2.9)

(2.6)(2.6)

(2.4)(2.4)

(2.11)(2.11)

SumOverRepeatedIndices(M_3[~mu,~nu].M_5[mu,nu]);
SumOverRepeatedIndices(M_3[~mu,~nu].M_6[mu,nu]);

0
0
1
0
0
0

SumOverRepeatedIndices(M_4[~mu,~nu].M_1[mu,nu]);
SumOverRepeatedIndices(M_4[~mu,~nu].M_2[mu,nu]);
SumOverRepeatedIndices(M_4[~mu,~nu].M_3[mu,nu]);
SumOverRepeatedIndices(M_4[~mu,~nu].M_4[mu,nu]);
SumOverRepeatedIndices(M_4[~mu,~nu].M_5[mu,nu]);
SumOverRepeatedIndices(M_4[~mu,~nu].M_6[mu,nu]);

0
0
0
1
0
0

SumOverRepeatedIndices(M_5[~mu,~nu].M_1[mu,nu]);
SumOverRepeatedIndices(M_5[~mu,~nu].M_2[mu,nu]);
SumOverRepeatedIndices(M_5[~mu,~nu].M_3[mu,nu]);
SumOverRepeatedIndices(M_5[~mu,~nu].M_4[mu,nu]);
SumOverRepeatedIndices(M_5[~mu,~nu].M_5[mu,nu]);
SumOverRepeatedIndices(M_5[~mu,~nu].M_6[mu,nu]);

0
0
0
0
1
0

SumOverRepeatedIndices(M_6[~mu,~nu].M_1[mu,nu]);
SumOverRepeatedIndices(M_6[~mu,~nu].M_2[mu,nu]);
SumOverRepeatedIndices(M_6[~mu,~nu].M_3[mu,nu]);
SumOverRepeatedIndices(M_6[~mu,~nu].M_4[mu,nu]);
SumOverRepeatedIndices(M_6[~mu,~nu].M_5[mu,nu]);
SumOverRepeatedIndices(M_6[~mu,~nu].M_6[mu,nu]);

0
0
0
0
0
1

Results from the Cosmological Case



(2.2)(2.2)

(2.9)(2.9)

> > 

(2.6)(2.6)

(2.4)(2.4)

> > 

> > 

> > 
(3.1)(3.1)

#This code defines the scalar, vector and tensor decomposition 
of the perturbations and their time derivatives. This part of 
the code also decomposes the perturbation to the shift. One may
check that the prescription is the same as the one given in 
equations 5.34-5.36.

Define(dot_h[mu,nu]= dot_h1*M_1[mu,nu] + dot_h2*M_2[mu,nu] + 
dot_h3*M_3[mu,nu] +dot_h4*M_4[mu,nu] + dot_h5*M_5[mu,nu] + 
dot_h6*M_6[mu,nu]):

Define(h[mu,nu]= h1*M_1[mu,nu] + h2*M_2[mu,nu] + h3*M_3[mu,nu] 
+ h4*M_4[mu,nu] + h5*M_5[mu,nu] + h6*M_6[mu,nu]):

Define(dot_p[~mu,~nu]= dot_p1*M_1[~mu,~nu] + dot_p2*M_2[~mu,
~nu] + dot_p3*M_3[~mu,~nu] +dot_p4*M_4[~mu,~nu] + dot_p5*M_5
[~mu,~nu] + dot_p6*M_6[~mu,~nu]):

Define(p[~mu,~nu]= p1*M_1[~mu,~nu] + p2*M_2[~mu,~nu] + p3*M_3
[~mu,~nu] + p4*M_4[~mu,~nu] + p5*M_5[~mu,~nu] + p6*M_6[~mu,~nu]
):

Define(xi[~mu]=xi_1*e_1[~mu] + xi_2*e_2[~mu] + xi_p*e_3[~mu]):

Define(e[~mu,~nu]=g_[~mu,~nu]):
Defined objects with tensor properties
Defined objects with tensor properties
Defined objects with tensor properties
Defined objects with tensor properties
Defined objects with tensor properties
Defined objects with tensor properties

#This is the spatial Fourier transform of the metric 
perturbation equation of motion. This will be decomposed along 
scalar, vector and tensor in the next command. This is the same
as equation 5.21.

metric_EOM_c:= dot_h[mu,nu]= 2*a*SumOverRepeatedIndices(e[mu,
alpha].e[nu,beta].p[~alpha,~beta]) - p/(6*a^2)*
SumOverRepeatedIndices(e[~alpha,~beta].h[alpha,beta])*e[mu,nu] 
- a*SumOverRepeatedIndices(p[~alpha,~beta].e[alpha,beta])*e[mu,
nu] + p/(6*a^2)*h[mu,nu] + a^2*I*(SumOverRepeatedIndices(xi
[~alpha].e[alpha,mu].k*e_3[nu])+SumOverRepeatedIndices(xi
[~alpha].e[alpha,nu].k*e_3[mu])):

decomposed_metric_EOM_c[1]:= SumOverRepeatedIndices(lhs
(metric_EOM_c).M_1[~mu,~nu]) = simplify(SumOverRepeatedIndices
(rhs(metric_EOM_c).M_1[~mu,~nu])): #The left hand side of the 
equation will pick h1_dot and the right hand side will pick out
the projection of the metric perturbation along M1 and simplify

decomposed_metric_EOM_c[2]:= SumOverRepeatedIndices(lhs
(metric_EOM_c).M_2[~mu,~nu]) = simplify(SumOverRepeatedIndices
(rhs(metric_EOM_c).M_2[~mu,~nu])):



(2.2)(2.2)

(2.9)(2.9)

> > 

> > 

(2.6)(2.6)

(2.4)(2.4)

> > 

> > 

> > 

(3.1)(3.1)

decomposed_metric_EOM_c[3]:= SumOverRepeatedIndices(lhs
(metric_EOM_c).M_3[~mu,~nu]) = simplify(SumOverRepeatedIndices
(rhs(metric_EOM_c).M_3[~mu,~nu])):
decomposed_metric_EOM_c[4]:= SumOverRepeatedIndices(lhs
(metric_EOM_c).M_4[~mu,~nu]) = simplify(SumOverRepeatedIndices
(rhs(metric_EOM_c).M_4[~mu,~nu])):
decomposed_metric_EOM_c[5]:= SumOverRepeatedIndices(lhs
(metric_EOM_c).M_5[~mu,~nu]) = simplify(SumOverRepeatedIndices
(rhs(metric_EOM_c).M_5[~mu,~nu])):
decomposed_metric_EOM_c[6]:= SumOverRepeatedIndices(lhs
(metric_EOM_c).M_6[~mu,~nu]) = simplify(SumOverRepeatedIndices
(rhs(metric_EOM_c).M_6[~mu,~nu])):

#This is the spatial Fourier transform of the momentum 
perturbation equation of motion. This is the same as equation 
5.22. This will be decomposed along scalar, vector and tensor 
in the next command.  

p_EOM_c:= dot_p[~mu,~nu] =  - p/(6*a^2)*p[~mu,~nu] + p/(12*a^2)
*SumOverRepeatedIndices(p[~alpha,~beta].e[alpha,beta])*e[~mu,
~nu] - (I*k*p)/(6*a)*(SumOverRepeatedIndices(e[~mu,~alpha].e_3
[alpha].xi[~nu]) + SumOverRepeatedIndices(e[~nu,~alpha].e_3
[alpha].xi[~mu])) + (I*p*k)/(6*a)*e[~mu,~nu].xi[~alpha].e_3
[alpha] + (p^2)/(72*a^5)*SumOverRepeatedIndices(h[alpha,beta].e
[~alpha,~beta])*e[~mu,~nu] - 5*p^2/(144*a^5)*
SumOverRepeatedIndices(e[~mu,~alpha].e[~nu,~beta].h[alpha,beta]
) - k^2/(2*a^3)*SumOverRepeatedIndices(e[~gamma,~sigma].(e_3
[alpha].e_3[gamma].h[sigma,beta] + e_3[beta].e_3[sigma].h
[gamma,alpha] - e_3[gamma].e_3[sigma].h[alpha,beta] - e_3
[alpha].e_3[beta].h[gamma,sigma] ).(e[~mu,~nu].e[~alpha,~beta]
/2 - e[~mu,~alpha].e[~nu,~beta])):

decomposed_p_EOM_c[1]:= SumOverRepeatedIndices(lhs(p_EOM_c).M_1
[mu,nu]) = simplify(SumOverRepeatedIndices(rhs(p_EOM_c).M_1[mu,
nu])): #The left hand side of the equation will pick p1_dot and
the right hand side will pick out the projection of the 
momentum perturbation along M1 and simplify

decomposed_p_EOM_c[2]:= SumOverRepeatedIndices(lhs(p_EOM_c).M_2
[mu,nu]) = simplify(SumOverRepeatedIndices(rhs(p_EOM_c).M_2[mu,
nu])):
decomposed_p_EOM_c[3]:= SumOverRepeatedIndices(lhs(p_EOM_c).M_3
[mu,nu]) = simplify(SumOverRepeatedIndices(rhs(p_EOM_c).M_3[mu,
nu])):
decomposed_p_EOM_c[4]:= SumOverRepeatedIndices(lhs(p_EOM_c).M_4
[mu,nu]) = simplify(SumOverRepeatedIndices(rhs(p_EOM_c).M_4[mu,
nu])):
decomposed_p_EOM_c[5]:= SumOverRepeatedIndices(lhs(p_EOM_c).M_5
[mu,nu]) = simplify(SumOverRepeatedIndices(rhs(p_EOM_c).M_5[mu,
nu])):
decomposed_p_EOM_c[6]:= SumOverRepeatedIndices(lhs(p_EOM_c).M_6
[mu,nu]) = simplify(SumOverRepeatedIndices(rhs(p_EOM_c).M_6[mu,
nu])):



(3.3)(3.3)

> > 

(3.6)(3.6)

(3.2)(3.2)

> > 

> > 

> > 

(3.5)(3.5)

(2.2)(2.2)

(2.9)(2.9)

(3.4)(3.4)

> > 

(2.6)(2.6)

(2.4)(2.4)

> > 

> > 

> > 

> > 

(3.1)(3.1)

#This is the spatial Fourier transform of the linearized 
diffeomorphism constraint; equation 5.23. This will be 
decomposed also.
Define(C_c[~nu]= SumOverRepeatedIndices(k*e_3[mu].p[~mu,~nu]) +
k*p/(12*a^3)*SumOverRepeatedIndices((e[~mu,~beta].e[~nu,~alpha]
+ e[~mu,~alpha].e[~nu,~beta]).(e_3[alpha].h[beta,mu] + e_3[mu].
h[alpha,beta] - e_3[beta].h[mu,alpha]))):
C_c[~nu,Matrix]:

Defined objects with tensor properties
longitudinal_ldc_c:=expand(simplify(C_c[~3]=0)); #Longitudinal 
part of the linearized diffeomorphism constraint.This is the 
same as equation 5.48.
transverse_ldc_c:=expand(simplify(C_c[~1]=0)); #One transverse 
part of the linearized diffeomorphism constraint. For the 
second transverse part, replace the subscript 6 by 5. This is 
the same as equation 5.49

tt_p_c:=expand(decomposed_p_EOM_c[3]); #One set of tensor mode 
equations. For the second set, replace the label 3 by 4 i.e the
two set of equations are identical; equations 5.42-5.43.
tt_h_c:=expand(decomposed_metric_EOM_c[3]);

Sc_p_c[1]:=expand(decomposed_p_EOM_c[1]); #These are the scalar
mode equations; equations 5.38-5.41.
Sc_p_c[2]:=expand(decomposed_p_EOM_c[2]);
Sc_h_c[1]:=expand(decomposed_metric_EOM_c[1]);
Sc_h_c[2]:=expand(decomposed_metric_EOM_c[2]);

Ve_p_c[1]:=expand(decomposed_p_EOM_c[6]); #One set of vector 
mode equations. To get the second set, replace the subscirpt 6 



> > 

(3.6)(3.6)

> > 

(2.2)(2.2)

(2.9)(2.9)

> > 

> > 

(2.6)(2.6)

(3.1)(3.1)

(2.4)(2.4)

> > 

by 5, and the subscript 1 by 2. These are equations 5.44-5.47
Ve_h_c[1]:=expand(decomposed_metric_EOM_c[6]);
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