A Dynamic Data Structure for Efficient Bounded Line Range Search

by

Thuy T. T. Le and Bradford G. Nickerson

TR10 - 200, May 19, 2010

Faculty of Computer Science
University of New Brunswick
Fredericton, N.B. E3B 5A3
Canada

Phone: (506) 453-4566
Fax: (506) 453-3566
Email: fcs@unb.ca
www: http://www.cs.unb.ca
A Dynamic Data Structure for Efficient Bounded Line Range Search

Thuy Thi Thu Le and Bradford G. Nickerson

\{m6839,bgn\}@unb.ca
Faculty of Computer Science, University of New Brunswick
P.O. Box 4400, Fredericton, N.B. Canada E3B 5A3.

Abstract. A dynamic data structure for efficient axis-aligned orthogonal range search on a set of \(n \) lines in a bounded plane is presented. The algorithm requires \(O(\log n + k) \) time in the worst case to find all lines intersecting an axis aligned query rectangle \(R \), for \(k \) the number of lines in range. \(O(n + \lambda) \) space is required for the data structure used by the algorithm, where \(\lambda \) is the number of intersection points among the lines. Insertion of a new rightmost line \(\ell \) or deletion of a leftmost line \(\ell \) requires \(O(n) \) time in the worst case. For a sparse arrangement of lines (i.e., for \(\lambda = O(n) \)), insertion of a rightmost line \(\ell \) or deletion of a leftmost line \(\ell \) requires \(O(\sqrt{n}) \) expected time.

1 Introduction

Lines in a bounded plane can represent a large variety of natural phenomenon, including trajectories of moving objects, boundaries within the plane or linear constraints for optimization problems.

Range search among a set of geometric objects has been studied extensively for the last two decades (see e.g. [2], [9]). Data structures for searching an arrangement of \(n \) lines in the plane are presented in e.g. [5] and [6]. An arrangement stores the relationships among vertices, edges and convex regions arising from the \(O(n^2) \) intersections of the lines. Arrangements arise naturally in point search as points in primal space become lines in dual space. Arrangements of lines are used to support a variety of geometric search problems, such as halfspace range search of points [1].

Line segment search is another important class of geometric search problem. Reporting the \(\lambda \) intersections among a set of \(n \) line segments was solved in optimal time \(O(n \log n + \lambda) \) using \(O(n + \lambda) \) space in [4]. The space was improved to optimal \(O(n) \) in [3]. Reporting horizontal line segments intersecting a vertical query line segment was solved in \(O(\log n + k) \) time and \(O(n \frac{\log n}{\log \log n}) \) space [10]. A well known data structure, the persistent search tree [11], can report \(k \) line segments crossing a vertical segment in \(O(\log n + k) \) time using \(O(n + \lambda) \) space to store \(n \) line segments. However, this data structure does not support insertion and deletion. We build a dynamic data structure to answer queries in \(O(\log n+k) \) time using \(O(n + \lambda) \) space.
We explore the problem of the 2-d axis aligned orthogonal range search of lines in a bounded plane using the pointer machine model. In a 2-d space with axes x and y, we are given a set of n lines in a plane whose bounds are $[0, x_{max}]$ and $[0, y_{max}]$, respectively. We propose a new algorithm using a data structure called the *ordered polyline tree* to efficiently index a set of n bounded lines. Given an axis aligned query rectangle R, our algorithm can report all lines intersecting R in $O(\log n + k)$ time in the worst case using $O(n + \lambda)$ space, where λ is the number of intersections among the lines. To our knowledge, this is the first dynamic data structure to match the persistent range search tree in space and range search time complexity. The algorithm we present is practical to implement. This paper improves on a previous result [7] requiring $O((\log n)^2 + \beta)$ time in the worst case, for β the number of segments (resulting from the arrangement of lines) intersecting R.

2 Our Approach

Given a set of lines having slopes $m \in (0, \infty]$. Searching for lines intersecting a query rectangle R with four vertices $A, B, C,$ and D (in a clockwise direction, see Fig. 1) is to find lines intersecting the left vertical line segment AD and the bottom horizontal line segment DC. We divide a set L of lines on the plane into two subsets L_1 and L_2. L_1 contains lines oriented with slope $m \in (0, \infty]$ and L_2 has lines with slope $m \in (-\infty, 0]$. In the following discussion of the paper, we focus only on L_1, the subset of lines with slope $m \in (0, \infty]$. A similar algorithm and analysis applies to L_2. Ordered polyline trees for both L_1 and L_2 provide the basis for the complete search algorithm.

We use the notion x-level(i) to refer to the set of lines intersecting the line $x = i$ ordered top-to-bottom. Similarly, y-level(i) refers to a set of lines intersecting the line $y = i$ ordered left-to-right. Fig. 2 shows an example of two x-levels: x-level(15.0) and x-level(19.2), and two y-levels: y-level(3.6) and y-level(6.3). The order of lines changes where lines intersect. For the set of eight lines and query

![Fig. 1: Query rectangle R with four vertices A, B, C, and D. Lines with slopes $\in (0, \infty]$ intersect the rectangle R if and only if they intersect line segments AD or DC of the rectangle.](image-url)
Fig. 2: Eight bounded lines having slopes \(m \in (0, -\infty) \). Query rectangle \(ABCD \) has points \(A=(17, 7.7) \) and \(C=(20,6) \). Dashed lines show \(x \)-levels and \(y \)-levels near \(AD \) and \(DC \). Bounded line \(o_i \) has two endpoints \(b_i \) and \(e_i \). \(v_1, ..., v_7 \) are vertices at intersections. Lines \(o_3 \) and \(o_8 \) are in range.

rectangle \(ABCD \) in Fig. 2, we only need to search for lines intersecting \(AD \) on \(x \)-level(15) and \(DC \) on \(y \)-level(3.6). We build a data structure for efficient search based on this idea. An ordered polyline \(p_i \) is created by connecting line segments at intersections (with each other and with the \(x = 0 \), \(x = x_{max} \), \(y = 0 \), and \(y = y_{max} \) boundaries). For example, the first three ordered polylines in Fig. 2 are \(p_1 = \{b_1, v_3, e_2\} \), \(p_2 = \{b_2, v_3, e_1\} \), and \(p_3 = \{b_3, v_1, v_6, e_5\} \), ordered from left to right. Ordered polylines intersect each other only at intersection vertices. Points in an ordered polyline are monotonically increasing in both \(x \) and \(y \). We connect points in an ordered polyline together into a list of entries, and arrange ordered polylines in a balanced search tree.

Each ordered polyline \(p_i \) divides the bounded plane into two disjoint parts. Points to the left of \(p_i \) are guaranteed to be in the left subtree of the node containing \(p_i \). Similarly, points to the right of \(p_i \) are in the right subtree of the node containing \(p_i \).

In the worst case, every line intersects all other lines (see Fig. 3). For \(n \)

Fig. 3: Example of 8 lines \(o_1, ..., o_8 \) in the worst case, when each line intersects 7 others.
lines, this worst case results in at most \(\frac{n(n-1)}{2} \), or \(O(n^2) \) intersections, with each ordered polyline requiring at most \(2(n-1) \) line segments, or each node of the tree storing at most \(2(n-1) \) entries. The number of nodes of the tree and the number of ordered polylines is still precisely \(n \).

3 Ordered Polyline Tree

Ordered polylines are arranged as a balanced binary search tree, called an *ordered polyline tree*, based on each \(p_i \), dividing space \((x \times y)\) into two parts. Each ordered polyline contains a list of entries. Each entry contains a point \((x, y)\), a line ID, three (left, right, next) pointers on \(x \), and one next pointer on \(y \). We use the term \(x\)-entry (\(y\)-entry) to refer to the \(x \) value (\(y \)-value) at an entry. Fig. 4 shows the ordered polyline tree (for one entry on each node in \(x\)-entries) based on the ordered polyline tree in Fig. 2. A full ordered polyline tree has pointers on both \(x\)-entries and \(y\)-entries. For simplicity, Fig. 4 only shows pointers to the next \(x\)-entry.

For a polyline \(p_i \), with \(x\)-entry \(x_j \), the (left, right, next) pointers point to the largest \(x\)-entry \(\leq x_j \) in \(p_i \)'s (left, right, next) nodes, respectively. If no \(x\)-entries in \(p_i \)'s (left, right, next) nodes are \(\leq x_j \), the (left, right, next) pointers point to the smallest \(x\)-entry \(> x_j \). In this way, we record all line segments in the arrangement of bounded lines such that a traversal of the tree from root to leaf serves to find the polyline immediately to the left of a query point \(A \). Following next pointers of \(x\)-entries finds segments of ordered polylines in downward order for a vertical query segment \(AD \). Following next pointers of \(y\)-entries finds segments of ordered polylines in left-to-right order for a horizontal query segment \(DC \).
3.1 Space Complexity

Theorem 1 The ordered polyline tree use $O(n + \lambda)$ space to index a set of n lines with λ intersections among the lines.

Proof. Without loss of generality, we assume that all n lines are oriented with slope $m \in (0, \infty]$. Assume each value stored in an entry of a node has size 1 (e.g., 1 for a coordinate x or y, a line ID, or a pointer). An entry of the ordered polyline tree is of size 7. There are $2n + 2\lambda$ entries among n nodes of the tree. The size of the tree is $7(2n + 2\lambda) = 14(n + \lambda) = O(n + \lambda)$. \Box

Theorem 2 For a set L of n lines in a bounded plane, the required space to index them using ordered polyline trees is $O(n + \lambda)$, where λ is the total number of intersection points among the lines.

Proof. Since an ordered polyline tree is used to index lines having the same slope domain (i.e., slope $m \in (0, \infty]$ or $m \in (-\infty, 0]$), we need two ordered polyline trees to index all n lines of any slope. Assume that the set L of n lines in the bounded plane is divided into two subsets L_1 and L_2. L_1 contains n_1 lines oriented with slope $m \in (0, \infty]$ and L_2 has n_2 lines with slope $m \in (-\infty, 0]$. Let λ_1 and λ_2 be the number of intersection points among lines in L_1 and L_2, respectively. We need two ordered polyline trees, one for indexing L_1 and the other for indexing L_2. From Theorem 1, the required space for L_1 is $O(n_1 + \lambda_1)$, and the required space for L_2 is $O(n_2 + \lambda_2)$. The overall space of the both trees is $O(n_1 + n_2 + \lambda_1 + \lambda_2) = O(n + \lambda)$, since $\lambda \geq \lambda_1 + \lambda_2$. \Box

4 Search Complexity

Given a query rectangle R with four vertices A, B, C, and $D = (t, r)$ in a clockwise direction. The search proceeds by finding the nearest polyline to the upper left of A, following x-entries to find lines intersecting AD (with $x = t$), then following y-entries to find lines intersecting DC (with $y = r$). The improvement is that (x, y)-entries point to the next adjacent segment in the next adjacent polyline. This reduces search time at each node from $O(\log_2 w)$ to $O(1)$, where w is the number of entries stored in a node. The following shows the main steps of the search algorithm:

1. Searching starts from the root node, choosing the largest entry $e_i = (x_i, y_i, id_i)$ whose $x_i \leq t$. If $t <$ smallest x_i, choose the smallest entry.
2. Follow the entry’s *left* or *right* pointer to the next entry by comparing line id_i to point A. If A is left of the line, follow the left pointer; otherwise follow the right pointer.
3. We arrive at entry $e_i = (x_i, y_i, id_i)$ for node p_i. Choose the largest entry $e_j = (x_j, y_j, id_j)$ following e_i whose $x_j \leq t$. If $t <$ smallest x_j, choose the smallest entry.
4. Repeat (2) and (3) until reaching a leaf node.
(5) At node entry \(e_j = (x_j, y_j, id_j) \), if \(A \) is left of line \(id_j \), check to see if line \(id_j \) intersects \(AD \); if so, report line \(id_j \).

(6) Use the next pointer at this \(x \)-entry to find the next adjacent polyline entry \(x_i \). If \(x_i > t \), \(x_i \leftarrow x_{i-1} \). If \(x_i \leq t \), \(x_i \leftarrow x_{i+1} \).

(7) If line \(id_i \) intersects \(AD \), report line \(id_i \), and repeat step (6).

(8) We arrive at an entry \(e_i = (x_i, y_i, id_i) \) in polyline \(p_i \) with a line \(id_i \) below \(D \). Find the entry \(e_i \) in \(p_i \) with the largest \(y \)-entry value \(\leq r \). Report \(id_i \) if it intersects \(DC \).

(9) Use the next pointer at this \(y \)-entry to find the next adjacent polyline entry \(y_i \). If \(y_i > r \), \(y_i \leftarrow y_{i-1} \). If \(y_i \leq r \), \(y_i \leftarrow y_{i+1} \).

(10) If line \(id_i \) intersects \(DC \), report line \(id_i \), and repeat step (9).

(11) We arrive at an entry \(e_i = (x_i, y_i, id_i) \) with a line \(id_i \) right of \(C \), so no possible lines remain that can intersect \(R \).

Theorem 3 Using an ordered polyline tree indexing \(n \) bounded lines in the plane, an algorithm exists to report the \(k \) lines intersecting an axis aligned query rectangle \(R \) in worst case time \(O(\log_2(n) + k) \), where \(k \) is the number of lines in range.

Proof. Without loss of generality, we assume that all \(n \) lines are oriented with slope \(m \in (0, \infty] \). Assume \(w \) is the number of entries at the root node. Considering the 11 steps of the search algorithm above, we see that step (1) requires \(O(\log_2 w) \) time. Steps (2), (3) and (4) take a combined \(O(\log n) \) time to reach a leaf node. At step (3), when finding the largest entry \(e_j = (x_j, y_j, id_j) \) following \(e_i \) whose \(x_j \leq t \), we perform a binary search on the \(x \)-entries at node \(p_i \). The worst case for step (3) arises when the root polyline \(p_i \) separates 2 sets of \(n/2 \) lines. Assuming \(A \) is on the right side of \(p_i \), and that \(p_i \) is composed of two entries, this worst case requires up to \(O(\log_2 n) \) time to find \(e_j \). This can occur only once on the path to a leaf when the arrangement of lines to the right of \(p_i \) induces \(O(n/2) \) segments in the right polyline of \(p_i \). The remaining steps to a leaf require \(O(1) \) time. Steps (5) through (10) require \(O(1) \) time, and report the \(k \) lines intersecting \(R \). The total required time for searching is \(\log_2 w + O(\log_2 n) + k = O(\log_2 n + k) \) since \(w \leq n \). □

5 Dynamic Update

We consider a limited form of dynamic updates. Line insertions are done on the right hand side and line deletions on the left hand side of the plane. This dynamic data structure would be useful, for example, when representing a set of moving objects on a graph’s edge. For \(x \) representing time, and \(y \) representing positions along an edge, the (time \(\times \) position) space admits new moving objects on the right (for the \(L_1 \) subset). Similarly, we delete the oldest moving objects from the left side of the (time \(\times \) position) space.
5.1 Dynamic Data Structure

An ordered polyline tree with \(n \) nodes is a balanced binary tree where the depth of all leaves differs by at most one, and the depth of the tree is \(\log_2 n \). As insertion of a new line happens at the rightmost node, the left child tree of an internal node is always a complete tree.

When all leaves of the left subtree \(T_L \) at the root node of an ordered polyline tree \(T \) are one level shallower than all leaves of the right subtree \(T_R \) of \(T \) (Figure 5a), the number of nodes of \(T_R \) with its depth \(\log_2 n - 1 \) is \((2^0 + \ldots + 2^{\log_2 n - 2}) \), and the number of nodes of \(T_L \) with its depth \(\log_2 n - 2 \) is \((2^0 + \ldots + 2^{\log_2 n - 3}) \). There are \((2^0 + \ldots + 2^{\log_2 n - 2}) - (2^0 + \ldots + 2^{\log_2 n - 3}) = 2^{\log_2 n - 1} - \frac{n}{4} \) more nodes in \(T_R \) than in \(T_L \). Therefore, the left tree \(T_L \) contains \(\lfloor \frac{3n}{8} \rfloor \) nodes, and the right tree \(T_R \) contains \(\lfloor \frac{5n}{8} \rfloor \). Similarly, when all leaves of \(T_L \) is 1 level deeper than those of \(T_R \) (except the rightmost leaf) (Figure 5b), \(T_L \) contains \(\lceil \frac{2n}{5} \rceil \) nodes and \(T_R \) contains \(\lfloor \frac{3n}{8} \rfloor \). We obtain the following Lemma:

Lemma 1. For an ordered polyline \(T \) containing \(n \) nodes constructed using the insertion at right-hand-side algorithm, the number of nodes in the left subtree \(T_L \) or the right subtree \(T_R \) of \(T \) is between \(\lfloor \frac{3n}{8} \rfloor \) and \(\lceil \frac{3n}{8} \rceil \), and \(\lvert T_L \rvert + \lvert T_R \rvert + 1 = n \). The height of \(T \) is \(\lfloor \log_2 n \rfloor \).

Inserting a rightmost node to, or deleting a leftmost node from an ordered polyline tree can make the tree unbalanced. The \(O(\log_2 n) \) nodes in the path from the involved leaf to the tree root have their height information updated. A rebalancing of the tree happens when the inserted rightmost node makes \(T \) unbalanced (e.g., an internal node \(P \) belonging to the rightmost path from the inserted rightmost node to the root of \(T \) has its right subtree’s levels two levels deeper than its left subtree (see Figure 6)). We need a left rotation at \(P \) to make the tree balanced. Similarly, deleting a leftmost node from \(T \) can make \(T \) unbalanced (e.g., an internal node \(P \) belonging to the leftmost path from the
Fig. 6: (a) An example of an unbalanced tree at node P. (b) After rebalancing, P changes its right pointer, and Q changes its left pointer. Other nodes remain the same.

deleted node to the root of T has its right subtree’s levels two levels deeper than its left subtree). A left rotation at P makes tree T rebalanced (see Figure 6).

Lemma 2. Rebalancing an ordered polyline tree T after inserting a rightmost node or deleting a leftmost node involves at most three nodes of the tree.

Proof. The tree is always unbalanced at a node P on the rightmost path or the leftmost path of the tree. If the tree is unbalanced at node P, a left rotation at P is applied to make the tree balanced (Figure 6). Let Q be the right child of P. As the result of rebalancing, the two involved nodes are P and Q. P changes its entries’ right pointers, and Q changes its entries’ left pointers. If P is not a root node, let U be P’s parent node. After rebalancing the tree, U changes its entries’ right (left) pointers if P is the right (left) child of U. All pointers of other nodes remain the same. □

Lemma 3. At most four nodes have their entries’ pointers changed as a result of inserting a rightmost line to, or deleting a leftmost line from the ordered polyline tree T.

Proof. Let $node_R$ and $node_L$ be the existing rightmost and leftmost ordered polylines of T, respectively. Inserting a rightmost ordered polyline to T results in all $node_R$ entries’ right pointers point to entries of the inserted node. Deleting $node_L$ from T results in all entries of $node_L$’s parent node changing their left pointers to null or to the next ordered polyline adjacent to $node_L$. Together with Lemma 3, there are at most four nodes having their entries’s pointers changing after an insertion or a deletion. □

5.2 Insertion

If a new line ℓ is inserted on the right-hand-side, and there are μ intersection points between ℓ and ordered polylines $p_{n-(\mu-1)}, \ldots, p_{n-1}, p_n$ (see Figure 7), the required time to insert ℓ into the ordered polyline tree T is $O(\log n + \mu)$. There is one intersection between ℓ and each of the μ ordered polylines. Assume u_1, \ldots, u_μ is the top-down y-sorted list of μ intersection points of ℓ and lines ℓ_1, \ldots, ℓ_μ among
Fig. 7: Example of inserting the rightmost bounded line ℓ having endpoints a and b into the ordered polyline tree containing a set of eight lines (Figure 2). u_1, u_2, and u_3 are three intersection points between ℓ and lines o_6, o_3, and o_8, respectively.

μ ordered polylines. In this case, ℓ_μ belongs to the rightmost ordered polyline p_n in T.

Finding μ intersections requires $O(\log n + \mu)$ time by first finding the ordered polyline $p_{n-(\mu-1)}$ intersecting ℓ, then finding the intersecting line ℓ_1 and computing the intersection point u_1. We use the next pointer at the current entry containing ℓ_1 to compute u_2, where u_2 is the intersection between ℓ and ℓ_2. This process is repeated until we reach ℓ_μ on p_n and obtain u_μ.

Updating μ ordered polylines requires $O(\mu)$ time. An ordered polyline containing points $e_1, ..., e_w$ is separated into two parts at the intersection point u_i of ℓ and ℓ_i ($1 \leq i \leq \mu$). The first part contains entries $e_1, ..., e_i, u_i$, and the second part is $(u_i, e_{i+1}, ..., e_w)$. An updated ordered polyline is obtained by concatenating its first part to the $y = y_{\text{max}}$ end point of ℓ or to the second part of the previous ordered polyline. The first updated ordered polyline will concatenate the $y = y_{\text{max}}$ end point of ℓ. A new ordered polyline node p_{n+1} is created by concatenating the $y = 0$ end point of ℓ and the second part of p_n. Inserting an entry to each ordered polyline requires $O(1)$ time to find u_i and concatenation. It takes $O(1)$ time to travel from one inserted entry of an ordered polyline to the next inserted entry of the next ordered polyline. Therefore, the required time to insert μ entries to μ ordered polylines is $O(\mu)$. This leads to the following lemma:

Lemma 4. The time to find the location of a new line ℓ, and to insert μ intersections from ℓ into each of μ existing ordered polylines is $O(\log n + \mu)$.

Figure 7 shows an example of inserting a rightmost line to eight existing bounded lines stored in an ordered polyline tree shown in Figure 4. Line ℓ intersects three lines o_6, o_3, and o_8 at u_1, u_2, and u_3 respectively. Before being intersected by ℓ, the three last ordered polylines are $p_6 = \{b_6, v_4, v_5, e_7\}$,
Let \(p_7 = \{b_7, v_7, e_3\} \), and \(p_8 = \{b_8, v_7, e_3\} \). Let \(p_i^1 \) and \(p_i^2 \) be the first and second parts of \(p_i \), respectively, after \(p_i \) is divided by an intersection point \(u \). We have

\[
\begin{align*}
 p_6^1 &= \{b_6, v_4, v_5, u_1\}, & p_6^2 &= \{u_1, e_7\}, \\
 p_7^1 &= \{b_7, v_5, u_2\}, & p_7^2 &= \{u_2, v_7, e_8\}, \\
 p_8^1 &= \{b_8, u_3\}, & p_8^2 &= \{u_3, v_7, e_3\}.
\end{align*}
\]

Let \(p_9^1 = \{a\} \) and \(p_9^2 = \{b\}. \) We obtain the three updated rightmost ordered polylines as follows:

\[
\begin{align*}
 p_6 &= p_6^1 + p_6^2 = \{b_6, v_4, v_5, u_1, b\}, \\
 p_7 &= p_7^1 + p_7^2 = \{b_7, v_5, u_2, u_1, e_7\}, \\
 p_8 &= p_8^1 + p_8^2 = \{b_8, u_3, u_2, v_7, e_8\}.
\end{align*}
\]

The added ordered polyline \(p_9 = p_9^1 + p_9^2 = \{a, u_3, v_7, e_3\} \). There are \(\mu = 3 \) ordered polylines with new entries to be inserted. When inserting node \(p_9 \) to the ordered polyline tree (Figure 4), we reorder \(p_7 \) and \(p_8 \) such that the right child of \(p_6 \) points to \(p_8 \). As a result, \(p_8 \)’s left child is \(p_7 \), and \(p_8 \)’s right child is \(p_9 \) (Figure 8). Three nodes \(p_7, p_8, \) and \(p_9 \) (the parent node of \(p_7 \) before rebalancing) are involved in the rebalancing.

Algorithm 1 shows the algorithm for inserting a rightmost line \(\ell \) to the ordered polyline tree \(T \). Function \(\text{entryIndex}(p_i, \ell_j) \) finds the index of the entry in \(p_i \) containing line \(\ell_j \). Function \(\text{nextEntryIndex}(e_k. x_{\text{next}}, \ell_j) \) locates the index of the entry in \(p_{i+1} \) containing line \(\ell_j \) using the next pointer on \(x \)-value of \(e_k \) in \(p_i \). Function \(\text{setEntriesPointers}(p_n) \) sets \(p_n \)’s next and right pointers to entries in the inserted ordered polyline \(p_{n+1} \). Function \(\text{setPointers}(u_j) \) sets the left, right, and next pointers for entry containing \(u_j \). Statements 1.5, 1.6, 1.10, and 1.12 imply the left, right, next pointers are set appropriately.

![Fig. 8: (a) Unbalanced ordered polyline tree after inserting node \(p_9 \). (b) The tree after re-balancing.](image)

Constructing a balanced ordered polyline tree by insertion of rightmost lines always results in a complete binary right sub-tree at any node of the tree. Inserting node \(p_{n+1} \) to the ordered polyline tree can make the tree unbalanced. The \(\log_2 n \) nodes in the path from the rightmost leaf to the tree root have their height information updated, and at most 4 nodes are involved in tree re-balancing (Lemma 3). Each node contains at most \(n \) entries which need to reassign their left or right pointers. It requires \(O(n) \) time to change left and right pointers in the nodes being re-balanced in this worst case. Assigning four pointers (i.e., left,
Algorithm 1: RightmostInsert\((T, \ell, \mu, (u_1, u_2, ..., u_\mu), (\ell_1, \ell_2, ..., \ell_\mu))\)

The algorithm for inserting a rightmost line \(\ell\) to the ordered polyline tree \(T\) indexing \(n\) lines.

input: Tree node \(T\), rightmost line \(\ell\) with two endpoints \(a\) and \(b\) on \(y = 0\) and \(y = y_{\text{max}}\), respectively, \(\mu\) intersections \((u_1, u_2, ..., u_\mu)\) between \(\ell\) and lines \((\ell_1, \ell_2, ..., \ell_\mu)\). In the algorithm, ordered polyline \(p_i = \{e_1, ..., e_{|p_i|}\}\).

Each entry \(e_i\) contains a point \((x, y)\), line id, three (left, right, next) pointers on \(x\), and one next pointer on \(y\).

output: Ordered polyline tree \(T\) with \(\ell\) inserted.

begin

1.1 if \(\mu > 0\) then
1.2 \(i \leftarrow n - \mu + 1\) //index of ordered polylines
1.3 \(j \leftarrow 1\) //index of intersected points or lines
1.4 \(p_{n+1}^1 \leftarrow \{a\}\)
1.5 \(p_{n-1}^2 \leftarrow \{b\}\)
1.6 Use \(b\) to travel down \(T\) to \(p_i\)
1.7 \(k \leftarrow \text{entryIndex}(p_i, \ell_j)\) //the index of entry in \(p_i\) containing line \(\ell_j\)
1.8 while \(i \leq n\) do
1.9 \(p_i \leftarrow \{e_1, ..., e_k\} \cup u_j \cup p_{n-1}^2\)
1.10 \(\text{setPointers}(u_j)\) //set the left, right, and next pointers for entry \(u_j\)
1.11 \(p_i^1 \leftarrow u_j \cup \{e_k, ..., e_{|p_i|}\}\)
1.12 \(j \leftarrow j + 1\)
1.13 \(i \leftarrow i + 1\)
1.14 \(k \leftarrow \text{nextEntryIndex}(e_k.x, \ell_j)\)
1.15 \(p_{n+1}^i \leftarrow p_{n+1}^i \cup p_n^1\)
1.16 else
1.17 \(p_{n+1} \leftarrow \{a, b\}\)
1.18 \(\text{setEntriesPointers}(p_n)\) //set \(p_n\’s\) next and right pointers
1.19 if \(\text{unBalanced}(T)\) then
1.20 \(\text{Rebalance}(T)\)
1.21 return \(T\);
1.22 end
right, and next x-pointer, and its next y-pointer) for each new inserted entry takes $O(1)$ time by using the pointers of the previous entry in the same ordered polyline node. Therefore, the total required time is $O(\log n + \mu + n)$, or $O(n)$. We have the following Theorem:

Theorem 4 The time to insert a new rightmost line ℓ into an ordered polyline tree indexing n lines is $O(n)$.

Definition 1. A sparse arrangement of n bounded lines in a plane has $\lambda=O(n)$.

Theorem 5 The time to insert a rightmost line ℓ into the ordered polyline tree of a sparse arrangement of n bounded lines in the plane is $O(\sqrt{n})$.

Proof. The number of entries of an ordered polyline tree is $2(n+\lambda)$. From Definition 1, the number of intersection points λ is $O(n)$. The number of entries in the tree is $2(n+O(n))$, or $O(n)$. The maximum number of lines intersecting each other to form a sparse line arrangement is $O(\sqrt{n})$, which leads to $O(n)$ intersections among lines. With $O(n)$ intersections among $O(\sqrt{n})$ lines, the number of points in one ordered polyline is $O(\sqrt{n})$ (see [8]). When the ordered polyline tree with n nodes needs to be re-balanced, the height information of $\log n$ nodes is updated, and at most four nodes are involved in re-balancing (Lemma 3). Pointers of all entries of the involved nodes need to be updated. Thus, the required time is $O(\log n + \sqrt{n}) = O(\sqrt{n})$. With Lemma 4, the required time to insert μ intersection points to existing ordered polylines is $O(\log n + \mu)$. The total required time is thus $O(\log n + \mu + \sqrt{n})$, or $O(\sqrt{n})$.

Corollary 1. The expected time to insert the rightmost line ℓ into the ordered polyline tree of a sparse arrangement is $O(\log n + \mu)$.

Proof. With the sparse arrangement of n lines, the number of entries of the tree is $2(n+O(n))$, or $O(n)$. The average number of points belonging to one ordered polyline is $O(n)/n$, or $O(1)$. When the ordered polyline tree with n nodes needs to be re-balanced, the required time is $O(1)$, due to the fact that each node has at most $O(1)$ entries, and at most four nodes are involved in the update (Lemma 3). With Lemma 4, the required time to insert μ intersection points to existing ordered polylines is $O(\log n + \mu)$. We arrive at the proof.

5.3 Deletion

Deleting a leftmost line ℓ, having μ intersections with μ existing lines, from the ordered polyline tree requires $O(\log n + \mu)$ time. We need to delete μ intersection points from μ ordered polylines. Let u_1, \ldots, u_μ be μ y-sorted intersection points between ℓ and lines $\ell_2, \ldots, \ell_{\mu+1}$, where ℓ_2 is on the leftmost ordered polyline. Note that if an ordered polyline p_i contains ℓ, there exists a line segment (u_j, u_{j+1}) of ℓ belonging to p_i. This line segment needs to be removed from p_i. An ordered polyline p_i containing points $e_1, \ldots, e_{j-1}, u_j, u_{j+1}, e_{j+2}, \ldots, e_w$ is separated into three parts. The first part e_1, \ldots, e_{j-1} is kept in p_i. The middle part u_j, u_{j+1}
is removed from \(p_i \). The third part \(c_{j+2}, \ldots, c_w \) is concatenated to the first part of \(p_{i+1} \) to form the updated \(p_{i+1} \). The updated ordered polyline \(p_i \) contains its first part concatenated with the third part of \(p_{i-1} \). It takes \(O(1) \) time to update an ordered polyline \(p_i \) by deleting the middle part \(u_j, u_{j+1} \) and concatenating the first part of \(p_i \) and the third part of \(p_{i+1} \).

Figure 9 shows an example of deleting the leftmost line \(\ell = a_3 \) from a set of six lines. Before deleting \(\ell \), the six ordered polylines are as follows:

\[
\begin{align*}
p_3 &= \{b_3, v_1, v_6, e_5\}, & p_4 &= \{b_4, v_1, v_2, v_6, e_4\}, \\
p_5 &= \{b_5, v_2, v_4, e_6\}, & p_6 &= \{b_6, v_4, v_5, e_7\}, \\
p_7 &= \{b_7, v_5, v_7, e_8\}, & p_8 &= \{b_8, v_7, e_3\}.
\end{align*}
\]

Let \(p_i^1, p_i^2, \) and \(p_i^3 \) be the first, second, and third parts of \(p_i \), respectively. Based on the deleted line \(\ell \) containing points \(b_3, v_1, v_2, v_4, v_5, v_7, \) and \(e_3 \), we have

\[
\begin{align*}
p_i^1 &= \{\}, & p_i^2 &= \{b_3, v_1\}, & p_i^3 &= \{v_6, e_5\}, \\
p_i^1 &= \{b_4\}, & p_i^2 &= \{v_1, v_2\}, & p_i^3 &= \{v_6, e_4\}, \\
p_i^1 &= \{b_5\}, & p_i^2 &= \{v_2, v_4\}, & p_i^3 &= \{e_6\}, \\
p_i^1 &= \{b_6\}, & p_i^2 &= \{v_4, v_5\}, & p_i^3 &= \{e_7\}, \\
p_i^1 &= \{b_7\}, & p_i^2 &= \{v_5, v_7\}, & p_i^3 &= \{e_8\}, \\
p_i^1 &= \{b_8\}, & p_i^2 &= \{v_7, e_3\}, & p_i^3 &= \{\}.
\end{align*}
\]

At each updated ordered polyline \(p_i \), we delete its second part \(p_i^2 \), then concatenate its first part \(p_i^1 \) and the third part \(p_i^{3-1} \) of \(p_{i-1} \). The updated ordered polylines are shown as follows:

\[
\begin{align*}
p_4 &= p_3^1 + p_3^3 = \{b_4, v_6, e_5\}, \\
p_5 &= p_3^1 + p_3^3 = \{b_4, v_5, e_4\}, \\
p_6 &= p_3^1 + p_3^3 = \{b_6, e_6\}, \\
p_7 &= p_3^1 + p_3^3 = \{b_7, e_7\}, \\
p_8 &= p_3^1 + p_3^3 = \{b_8, e_8\}.
\end{align*}
\]

Ordered polyline \(p_3 \) is removed resulting in \(p_3 \)’s parent having a right child but no left child. No node is involved in rebalancing the ordered polyline tree in this case (Figure 10).
Fig. 10: The ordered polyline tree (a) before and (b) after deleting node \(p_3 \).

We then use the next pointer at the entry containing \(u_{j+1} \) of \(p_i \) to locate the entry on \(p_{i+1} \) containing \(u_{j+1} \). This step requires \(O(1) \) time. Now we have a new \(p_i \) with its middle part \(u_{j+1}, u_{j+2} \), so we repeat the deletion and update operations until all \(\mu \) intersections are visited. Updating \(\mu \) ordered polylines thus requires \(O(\mu) \) time.

Deleting node \(p_1 \) from \(n \) existing nodes of the ordered polyline tree can make the tree unbalanced. Similar to insertion, it requires \(O(n) \) time to reorder all nodes of the tree in the worst case. Therefore, the total required time for deleting leftmost line \(\ell \) is \(O(\mu + n) \), or \(O(n) \). We have the following Theorem:

Theorem 6 The time to delete a leftmost line \(\ell \) from an ordered polyline tree indexing \(n \) lines is \(O(n) \).

Theorem 7 The time to delete a leftmost line \(\ell \) from an ordered polyline tree of a sparse arrangement of \(n \) bounded lines in the plane is \(O(\sqrt{n}) \).

Algorithm 2 shows the algorithm for deleting the leftmost line \(\ell \) from the ordered polyline tree \(T \). For the example of Figure 9, \(\mu = 5 \), and intersections \((u_1, u_2, u_3, u_4, u_5) = (v_1, v_2, v_4, v_5, v_7)\). Functions \(\text{index}_{\text{entryBefore}}(p_i, u_j) \) and \(\text{index}_{\text{entryAfter}}(p_i, u_j) \) find the index of the entry before and after \(u_j \) in \(p_i \), respectively. Function \(\text{nextEntryIndex}(u_{j+1}.x_{\text{next}}) \) finds the index of the entry in \(p_{i+1} \) containing point \(u_{j+1} \), using the next pointer on \(x \)-value at \(u_{j+1} \) in \(p_i \).

Statement 2.14 implies the left, right, next pointers of related entries are set appropriately.

6 Conclusion

We present a new dynamic data structure for efficient axis aligned range search of a set of \(n \) lines on a bounded plane. To the best of our knowledge, this is the first dynamic data structure to solve this problem in \(O(\log n + k) \) search time in the worst case to find all lines intersecting an axis aligned query rectangle \(R \), for \(k \) the number of lines in range, and \(O(n + \lambda) \) space.

Can the approach used here support general insertion or deletion of any bounded line? An open problem is how to build an I/O-efficient data structure to achieve logarithmic search time on a set of \(n \) bounded lines and linear storage space. The unpredictable number of intersections among lines makes the optimal branching factor hard to determine.
Algorithm 2: LeftmostDelete(T, ℓ, µ, (u₁, u₂, ..., u_µ))

The algorithm for deleting the leftmost line ℓ from the ordered polyline tree T indexing n lines.

input: Tree node T, leftmost line ℓ with two endpoints a and b on y = 0 and y = y_{max}, respectively; µ intersections (u₁, u₂, ..., u_µ) between ℓ and lines (ℓ₂, ℓ₃, ..., ℓ_{µ+1}). In the algorithm, ordered polyline

\[p_i = \{ e_1, ..., e_{|p_i|} \} \]

Each entry eᵢ contains a point (x, y), line id, three (left, right, next) pointers on x, and one next pointer on y.

output: Ordered polyline tree T with the leftmost line ℓ deleted.

begin

2.1 Travel down leftmost path of T to \(p_1 \)

2.2 if \(µ > 0 \) then

2.3 \(k \leftarrow index_entryAfter(p_1, u_1) \) //index of entry after \(u_1 \) in \(p_1 \)

2.4 \(p_i = \{ e_k, ..., e_{|p_i|} \} \)

2.5 \(i \leftarrow 2 \) //index of ordered polylines

2.6 \(j \leftarrow 1 \) //index of intersection points

2.7 while \(j \leq µ \) do

2.8 \(k \leftarrow index_entryBefore(p_i, u_j) \) //index of entry before \(u_j \) in \(p_i \)

2.9 \(p_i = \{ e_1, ..., e_k \} \)

2.10 \(k \leftarrow index_entryAfter(p_i, u_{j+1}) \) //index of entry after \(u_{j+1} \) in \(p_i \)

2.11 \(p_i = \{ e_k', ..., e_{|p_i|} \} \)

2.12 \(Delete(p_i, u_j, u_{j+1}) \) //delete two entries containing \(u_j \) and \(u_{j+1} \) in \(p_i \)

2.13 \(p_i = p_i' \cup p_i'' \) //the updated \(p_i \)

2.14 \(i \leftarrow i + 1 \)

2.15 \(j \leftarrow j + 1 \)

2.16 //from \(u_{j+1} \) on \(p_i \) find the index of the entry in \(p_{i+1} \) containing point \(u_{j+1} \)

2.17 \(k \leftarrow nextEntryIndex(u_{j+1}.x_{next}) \)

2.18 \(Delete(p_i) \) //remove \(p_i \) from \(T \)

2.19 if unBalanced(T) then

2.20 \(Rebalance(T) \)

2.21 return \(T \)

2.22 end
7 Acknowledgements

This research is supported, in part, by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the UNB Faculty of Computer Science, and the government of Vietnam.

References