Kanaani, Mohammadamin2024-05-082024-05-082024-02Thesis 11367https://unbscholar.lib.unb.ca/handle/1882/37806In response to the proliferation of misinformation on social media platforms, this thesis introduces the Triple-R framework (Retriever, Ranker, Reasoner) to enhance fact-checking by leveraging the Web for evidence retrieval and generating understandable explanations for its decisions. Unlike existing methods, Triple-R incorporates external sources for evidence and provides explanations for datasets lacking them. By fine-tuning a causal language model, it produces natural language explanations and labels for evidence-claim pairs, aiming for greater transparency and interpretability in fact-checking systems. Evaluated on a popular dataset, Triple-R achieved a state-of-the-art accuracy of 42.72% on the LIAR benchmark, outperforming current automated fact verification methods. This underscores its effectiveness in integrating web sources and offering clear reasons, presenting a significant step forward in the fight against online misinformation.xviii, 139electronicenhttp://purl.org/coar/access_right/c_abf2Misinformation.Social media.Causal relations (Linguistics)Reasoning for fact verification using language modelsmaster thesisGhorbani, Ali A.(OCoLC)1441292272Computer Science