UNB Libraries: Scholar Research Repository
  • Log In
    Communities & Collections
    Browse
  • What is UNB Scholar?Deposit to UNB ScholarUNB Scholar PolicyContact
  1. Home
  2. Browse by Author

Browsing by Author "Ali Akhaee, Mohammad"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Regression convolutional neural network for improved simultaneous EMG control
    (IOP Publishing, 2019) Ameri, Ali; Ali Akhaee, Mohammad; Scheme, Erik; Englehart, Kevin
    Objective. Deep learning models can learn representations of data that extract useful information in order to perform prediction without feature engineering. In this paper, an electromyography (EMG) control scheme with a regression convolutional neural network (CNN) is proposed as a substitute of conventional regression models that use purposefully designed features. Approach. The usability of the regression CNN model is validated for the first time, using an online Fitts' law style test with both individual and simultaneous wrist motions. Results were compared to that of a support vector regression-based scheme with a group of widely used extracted features. Main results. In spite of the proven efficiency of these well-known features, the CNN-based system outperformed the support vector machine (SVM) based scheme in throughput, due to higher regression accuracies especially with high EMG amplitudes. Significance. These results indicate that the CNN model can extract underlying motor control information from EMG signals during single and multiple degree-of-freedom (DoF) tasks. The advantage of regression CNN over classification CNN (studied previously) is that it allows independent and simultaneous control of motions.
University of New Brunswick: established in 1785

General

  • Contact Us
  • Find Us
  • Library News
  • Hours
  • Policies

Libraries

  • Harriet Irving
  • Science & Forestry
  • Engineering & Computer Science
  • Hans W. Klohn Commons
  • Gerard V. La Forest Law

Departments

  • Archives & Special Collections
  • Centre for Digital Scholarship
  • Microforms
  • Government Documents, Data & Maps
  • … more

Join the conversation:

  • Facebook
  • Twitter
  • Instagram
  • Copyright
  • Privacy
  • Accessibility
  • Web Feedback
  • UNB Libraries
  • Ask Us
  • Feedback
  • Search