UNB Libraries: Scholar Research Repository
  • Log In
    Communities & Collections
    Browse
  • What is UNB Scholar?Deposit to UNB ScholarUNB Scholar PolicyContact
  1. Home
  2. Browse by Author

Browsing by Author "Behroozi, Elham"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Machine learning approaches for estimating forest stand height using airborne LiDAR data in New Brunswick forests
    (University of New Brunswick, 2024-10) Behroozi, Elham; Kershaw Jr., John A.
    Accurate forest stand height estimation is crucial for effective forest management, ecological studies, and carbon stock assessment. Airborne LiDAR is an advanced remote sensing technology extensively used in forest inventory. This study investigates machine learning techniques for estimating forest stand height using airborne LiDAR data in New Brunswick, Canada, evaluating Linear Regression (LM), Random Forest (RF), Gradient Boosting Machine (GBM), and Support Vector Machines (SVM). Results show that Linear Regression and Gradient Boosting Machine models provide the highest accuracy, with R2s up to 0.76 and rMSEs as low as 1.06m. Conversely, the Random Forest model underperformed. This study demonstrates the value of combining high-resolution LiDAR data with machine learning models to improve forest stand height estimation accuracy, supporting sustainable forest management and conservation efforts.
University of New Brunswick: established in 1785

General

  • Contact Us
  • Find Us
  • Library News
  • Hours
  • Policies

Libraries

  • Harriet Irving
  • Science & Forestry
  • Engineering & Computer Science
  • Hans W. Klohn Commons
  • Gerard V. La Forest Law

Departments

  • Archives & Special Collections
  • Centre for Digital Scholarship
  • Microforms
  • Government Documents, Data & Maps
  • … more

Join the conversation:

  • Facebook
  • Twitter
  • Instagram
  • Copyright
  • Privacy
  • Accessibility
  • Web Feedback
  • UNB Libraries
  • Ask Us
  • Feedback
  • Search