Browsing by Author "Crawford, Bryan, D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Activity and Distribution of Paxillin, Focal Adhesion Kinase, and Cadherin Indicate Cooperative Roles during Zebrafish Morphogenesis(2003) Crawford, Bryan, D.; Henry, Clarissa, A.; Clason, Todd, A.; Becker, Amanda, L.; Hille, Merrill, B.We investigated the focal adhesion proteins paxillin and Fak, and the cell-cell adhesion protein cadherin in developing zebrafish (Danio rerio) embryos. Cadherins are expressed in presomitic mesoderm where they delineate cells. The initiation of somite formation coincides with an increase in the phosphorylation of Fak, and the accumulation of Fak, phosphorylated Fak, paxillin, and fibronectin at nascent somite boundaries. In the notochord, cadherins are expressed on cells during intercalation, and phosphorylated Fak accumulates in circumferential rings where the notochord cells contact laminin in the perichordal sheath. Subsequently, changes in the orienta- tions of collagen fibers in the sheath suggest that Fak-mediated adhesion allows longitudinal expansion of the notochord, but not lateral expansion, resulting in notochord elongation. Novel observations showed that focal adhesion kinase and paxillin concentrate at sites of cell-cell adhesion in the epithelial enveloping layer and may associate with actin cytoskeleton at epithelial junctions containing cadherins. Fak is phosphorylated at these epithelial junctions but is not phosphorylated on Tyr397, implicating a noncanonical mechanism of regulation. These data suggest that Fak and paxillin may function in the integration of cadherin-based and integrin-based cell adhesion during the morphogenesis of the early zebrafish embryo.Item Shuttling of CTP:Phosphocholine cytidylyltransferase between the nucleus and endoplasmic reticulum accompanies the wave of phosphatidylcholine synthesis during the G(0) --> G(1) transition.(1999) Northwood, Ingrid, C.; Tong, Amy, H. Y.; Crawford, Bryan, D.; Drobnies, Adrienne, E.; Cornell, Rosemary, B.The transition from quiescence (G(0)) into the cell division cycle is marked by accelerated phospholipid turnover. We examined the rates of phosphatidylcholine (PC) synthesis and the activity, membrane affinity, and intracellular localization of the rate-limiting enzyme in the synthesis of PC, CTP:phosphocholine cytidylyltransferase (CT) during this transition. The addition of serum to quiescent IIC9 fibroblasts resulted in a wave of PC synthesis beginning at approximately 10 min, peaking at approximately 3 h with a >10-fold increase in rate, and declining to near basal rates by 10 h. CT activity, monitored in situ, was elevated approximately 3-fold between 1 and 2 h postserum. Neither CT mass nor its phosphorylation state changed during the surge in PC synthesis and CT activity. On the other hand, the ratio of particulate/soluble CT surged and then receded in concert with the wave of PC synthesis. During quiescence, CT was confined to the nucleus, as assessed by indirect immunofluorescence. Within 10 min after serum stimulation, a portion of the CT fluorescence appeared in the cytoplasm, where it intensified until approximately 4 h postserum. Thereafter, the cytoplasmic CT signal waned, while the nuclear signal increased, and by 8 h CT was once again predominantly nuclear. The dynamics of CT's apparent translocation in and out of the nucleus paralleled the wave of PC synthesis and the solubility changes of CT. Cytoplasmic CT co-localized with BiP, a resident endoplasmic reticulum protein, in a double labeling experiment. These data suggest that the wave of PC synthesis that accompanies the G(0) --> G(1) transition is regulated by the coordinated changes in CT activity, membrane affinity, and intracellular distribution. We describe for the first time a redistribution of CT from the nucleus to the ER that correlates with an activation of the enzyme. We propose that this movement is required for the stimulation of PC synthesis during entry into the cell cycle.