Browsing by Author "Kamavuako, Ernest Nlandu"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item A Multiday Evaluation of Real-Time Intramuscular EMG Usability with ANN(MDPI, 2020) Waris, Asim; ur Rehman, Muhammad Zia; Niazi, Imran Khan; Jochumsen, Mads; Englehart, Kevin; Jensen, Winnie; Haavik, Heidi; Kamavuako, Ernest NlanduRecent developments in implantable technology, such as high-density recordings, wireless transmission of signals to a prosthetic hand, may pave the way for intramuscular electromyography (iEMG)-based myoelectric control in the future. This study aimed to investigate the real-time control performance of iEMG over time. A novel protocol was developed to quantify the robustness of the real-time performance parameters. Intramuscular wires were used to record EMG signals, which were kept inside the muscles for five consecutive days. Tests were performed on multiple days using Fitts’ law. Throughput, completion rate, path efficiency and overshoot were evaluated as performance metrics using three train/test strategies. Each train/test scheme was categorized on the basis of data quantity and the time difference between training and testing data. An artificial neural network (ANN) classifier was trained and tested on (i) data from the same day (WDT), (ii) data collected from the previous day and tested on present-day (BDT) and (iii) trained on all previous days including the present day and tested on present-day (CDT). It was found that the completion rate (91.6 ± 3.6%) of CDT was significantly better (p < 0.01) than BDT (74.02 ± 5.8%) and WDT (88.16 ± 3.6%). For BDT, on average, the first session of each day was significantly better (p < 0.01) than the second and third sessions for completion rate (77.9 ± 14.0%) and path efficiency (88.9 ± 16.9%). Subjects demonstrated the ability to achieve targets successfully with wire electrodes. Results also suggest that time variations in the iEMG signal can be catered by concatenating the data over several days. This scheme can be helpful in attaining stable and robust performance.Item Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation(IOP Publishing, 2016) Kamavuako, Ernest Nlandu; Scheme, Erik Justin; Englehart, Kevin BrianObjective. For over two decades, Hudgins' set of time domain features have extensively been applied for classification of hand motions. The calculation of slope sign change and zero crossing features uses a threshold to attenuate the effect of background noise. However, there is no consensus on the optimum threshold value. In this study, we investigate for the first time the effect of threshold selection on the feature space and classification accuracy using multiple datasets. Approach. In the first part, four datasets were used, and classification error (CE), separability index, scatter matrix separability criterion, and cardinality of the features were used as performance measures. In the second part, data from eight classes were collected during two separate days with two days in between from eight able-bodied subjects. The threshold for each feature was computed as a factor (R = 0:0.01:4) times the average root mean square of data during rest. For each day, we quantified CE for R = 0 (CEr0) and minimum error (CEbest). Moreover, a cross day threshold validation was applied where, for example, CE of day two (CEodt) is computed based on optimum threshold from day one and vice versa. Finally, we quantified the effect of the threshold when using training data from one day and test data of the other. Main results. All performance metrics generally degraded with increasing threshold values. On average, CEbest (5.26 ± 2.42%) was significantly better than CEr0 (7.51 ± 2.41%, P = 0.018), and CEodt (7.50 ± 2.50%, P = 0.021). During the two-fold validation between days, CEbest performed similar to CEr0. Interestingly, when using the threshold values optimized per subject from day one and day two respectively, on the cross-days classification, the performance decreased. Significance. We have demonstrated that threshold value has a strong impact on the feature space and that an optimum threshold can be quantified. However, this optimum threshold is highly data and subject driven and thus do not generalize well. There is a strong evidence that R = 0 provides a good trade-off between system performance and generalization. These findings are important for practical use of pattern recognition based myoelectric control.Item Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions(Institute of Electrical and Electronics Engineers, 2019-07) Waris, Asim; Niazi, Imran K.; Jamil, Mohsin; Englehart, Kevin; Jensen, Winnie; Kamavuako, Ernest NlanduCurrently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P <; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P <; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.Item Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions(Institute of Electrical and Electronics Engineers, 2019-07) Waris, Asim; Niazi, Imran K.; Jamil, Mohsin; Englehart, Kevin; Jensen, Winnie; Kamavuako, Ernest NlanduCurrently, most of the adopted myoelectric schemes for upper limb prostheses do not provide users with intuitive control. Higher accuracies have been reported using different classification algorithms but investigation on the reliability over time for these methods is very limited. In this study, we compared for the first time the longitudinal performance of selected state-of-the-art techniques for electromyography (EMG) based classification of hand motions. Experiments were conducted on ten able-bodied and six transradial amputees for seven continuous days. Linear discriminant analysis (LDA), artificial neural network (ANN), support vector machine (SVM), K-nearest neighbor (KNN), and decision trees (TREE) were compared. Comparative analysis showed that the ANN attained highest classification accuracy followed by LDA. Three-way repeated ANOVA test showed a significant difference (P <; 0.001) between EMG types (surface, intramuscular, and combined), days (1-7), classifiers, and their interactions. Performance on the last day was significantly better (P <; 0.05) than the first day for all classifiers and EMG types. Within-day, classification error (WCE) across all subject and days in ANN was: surface (9.12 ± 7.38%), intramuscular (11.86 ± 7.84%), and combined (6.11 ± 7.46%). The between-day analysis in a leave-one-day-out fashion showed that the ANN was the optimal classifier surface (21.88 ± 4.14%), intramuscular (29.33 ± 2.58%), and combined (14.37 ± 3.10%). Results indicate that within day performances of classifiers may be similar but over time, it may lead to a substantially different outcome. Furthermore, training ANN on multiple days might allow capturing time-dependent variability in the EMG signals and thus minimizing the necessity for daily system recalibration.Item On the robustness of real-time myoelectric control investigations: a multiday Fitts’ law approach(IOP Publishing, 2019) Waris, Asim; Mendez, Irene; Englehart, Kevin; Jensen, Winnie; Kamavuako, Ernest NlanduObjective. Real-time myoelectric experimental protocol is considered as a means to quantify usability of myoelectric control schemes. While usability should be considered over time to assure clinical robustness, all real-time studies reported thus far are limited to a single session or day and thus the influence of time on real-time performance is still unexplored. In this study, the aim was to develop a novel experimental protocol to quantify the effect of time on real-time performance measures over multiple days using a Fitts' law approach. Approach. Four metrics: throughput, completion rate, path efficiency and overshoot, were assessed using three train-test strategies: (i) an artificial neural network (ANN) classifier was trained on data collected from the previous day and tested on present day (BDT) (ii) trained and tested on the same day (WDT) and (iii) trained on all previous days including present day and tested on present day (CDT) in a week-long experimental protocol. Main results. It was found that on average, the completion rate (98.37% ± 1.47%) of CDT was significantly better (P < 0.01) than that of BDT (86.25% ± 3.46%) and WDT (94.22% ± 2.74%). The throughput (0.40 ± 0.03 bits s−1) of CDT was significantly better (P = 0.001) than that of BDT (0.38 ± 0.03 bits s−1). Offline analysis showed a different trend due to the difference in the training strategies. Significance. Results suggest that increasing the size of the training set over time can be beneficial to assure robust performance of the system over time.Item Surface Versus Untargeted Intramuscular EMG Based Classification of Simultaneous and Dynamically Changing Movements(Institute of Electrical and Electronics Engineers, 2013) Kamavuako, Ernest Nlandu; Rosenvang, Jakob Celander; Horup, Ronnie; Jensen, Winnie; Farina, Dario; Englehart, Kevin B.The pattern recognition-based myoelectric control scheme is in the process of being implemented in clinical settings, but it has been mainly tested on sequential and steady state data. This paper investigates the ability of pattern recognition to resolve movements that are simultaneous and dynamically changing and compares the use of surface and untargeted intramuscular EMG signals for this purpose. Ten able-bodied subjects participated in the study. Both EMG types were recorded concurrently from the right forearm. The subjects were instructed to track dynamic contraction profiles using single and combined degrees of freedom in three trials. During trials one and two, the amplitude and the frequency of the profile were kept constant (nonmodulated data), and during trial three, the two parameters were modulated (modulated data). The results showed that the performance was up to 93% for nonmodulated tasks, but highly depended on the nature of the data used. Surface and untargeted intramuscular EMG had equal performance for data of similar nature (nonmodulated), but the performance of intramuscular EMG decreased, compared to surface, when tested on modulated data. However, the results of intramuscular recordings obtained in this study are promising for future use of implantable electrodes, because, besides the value added in terms of potential chronic implantation, the performance is theoretically the same as for surface EMG provided that enough information is captured in the recordings. Nevertheless, care should be taken when training the system since data obtained from selective recordings probably need more training data to generalize to new signals.Item The effect of time on EMG classification of hand motions in able-bodied and transradial amputees(Elsevier, 2018-06) Waris, Asim; Niazi, Imran Khan; Jamil, Mohsin; Gilani, Omer; Englehart, Kevin; Jensen, Winnie; Shafique, Muhammad; Kamavuako, Ernest NlanduWhile several studies have demonstrated the short-term performance of pattern recognition systems, long-term investigations are very limited. In this study, we investigated changes in classification performance over time. Ten able-bodied individuals and six amputees took part in this study. EMG signals were recorded concurrently from surface and intramuscular electrodes, with intramuscular electrodes kept in the muscles for seven days. Seven hand motions were evaluated daily using linear discriminant analysis and the classification error quantified within (WCE) and between (BCE) days. BCE was computed for all possible combinations between the days. For all subjects, surface sEMG (7.2 ± 7.6%), iEMG (11.9 ± 9.1%) and cEMG (4.6 ± 4.8%) were significantly different (P < 0.001) from each other. A regression between WCE and days (1–7) was on average not significant implying that performance may be considered similar within each day. Regression between BCE and time difference (Df) in days was significant. The slope between BCE and Df (0–6) was significantly different from zero for sEMG (R2 = 89%) and iEMG (R2 = 95%) in amputees. Results indicate that performance continuously degrades as the time difference between training and testing day increases. Furthermore, for iEMG, performance in amputees was directly proportional to the size of the residual limb.