UNB Libraries: Scholar Research Repository
  • Log In
    Communities & Collections
    Browse
  • What is UNB Scholar?Deposit to UNB ScholarUNB Scholar PolicyContact
  1. Home
  2. Browse by Author

Browsing by Author "Webster, Iain, R."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A regional model for the prediction of ionospheric delay for single frequency users of the Global Positioning System
    Webster, Iain, R.
    One of the major limitations to the accuracy attainable using single frequency Global Positioning Systems receivers is the propagation delay of the signals as they pass through the ionosphere, especially during times of high solar activity. Errors of several parts per million can be encountered on baselines where only one frequency has been observed. This thesis presents an approach for modelling the ionospheric delay, using phase measurements from dual frequency receivers to estimate corrections for single frequency users operating within the same region. A surface is used to approximate the spatial distribution of the delay, and temporal changes are also taken into account by the estimation of a new surface at every epoch. To test the validity of the model, data were obtained from an experiment conducted near Ottawa, Canada, in October of 1990 by the Canada Centre for Remote Sensing and the Canada Centre for Surveying. Three dual frequency receivers on the ground are used to estimate ionospheric delay variations and to correct the observations from an airborne single frequency receiver moving in the vicinity of the other three receivers. It is shown that after the model has been applied, differences between three separate solutions for the position of the aircraft, computer with respect to different monitor stations, are at a level of one part per million (ppm). Before correction these differences were at two to three ppm, with periods of up to 50 ppm. It is felt that the model although fairly simple in design, is effective in reducing the ionospheric bias sufficiently well for a broad range of applications, including remote sensing, for which the test data was obtained.
  • Loading...
    Thumbnail Image
    Item
    A regional model for the prediction of ionospheric delay for single frequency users of the Global Positioning System
    Webster, Iain, R.
    One of the major limitations to the accuracy attainable using single frequency Global Positioning Systems receivers is the propagation delay of the signals as they pass through the ionosphere, especially during times of high solar activity. Errors of several parts per million can be encountered on baselines where only one frequency has been observed. This thesis presents an approach for modelling the ionospheric delay, using phase measurements from dual frequency receivers to estimate corrections for single frequency users operating within the same region. A surface is used to approximate the spatial distribution of the delay, and temporal changes are also taken into account by the estimation of a new surface at every epoch. To test the validity of the model, data were obtained from an experiment conducted near Ottawa, Canada, in October of 1990 by the Canada Centre for Remote Sensing and the Canada Centre for Surveying. Three dual frequency receivers on the ground are used to estimate ionospheric delay variations and to correct the observations from an airborne single frequency receiver moving in the vicinity of the other three receivers. It is shown that after the model has been applied, differences between three separate solutions for the position of the aircraft, computer with respect to different monitor stations, are at a level of one part per million (ppm). Before correction these differences were at two to three ppm, with periods of up to 50 ppm. It is felt that the model although fairly simple in design, is effective in reducing the ionospheric bias sufficiently well for a broad range of applications, including remote sensing, for which the test data was obtained.
University of New Brunswick: established in 1785

General

  • Contact Us
  • Find Us
  • Library News
  • Hours
  • Policies

Libraries

  • Harriet Irving
  • Science & Forestry
  • Engineering & Computer Science
  • Hans W. Klohn Commons
  • Gerard V. La Forest Law

Departments

  • Archives & Special Collections
  • Centre for Digital Scholarship
  • Microforms
  • Government Documents, Data & Maps
  • … more

Join the conversation:

  • Facebook
  • Twitter
  • Instagram
  • Copyright
  • Privacy
  • Accessibility
  • Web Feedback
  • UNB Libraries
  • Ask Us
  • Feedback
  • Search