Kaplansky’s conjectures and actions on CAT(-1) Spaces

dc.contributor.advisorTouikan, Nicholas
dc.contributor.authorBrannock, Matthew
dc.date.accessioned2024-03-06T15:04:34Z
dc.date.available2024-03-06T15:04:34Z
dc.date.issued2023-11
dc.description.abstractWe provide specific conditions on a ring R and a group G under which the group ring RG will satisfy the Kaplansky Conjectures on the existence of non-trivial units, zero-divisors and idempotents in the group ring. We give a chain of implications on properties that a group must have to satisfy these conjectures. Specifically, we define a Bowditch action of a group on a type of metric space called a CAT(-1) space and show this action will be spherically diffuse. We then prove that if a group acts on a metric space in a spherically diffusely, then the group itself must be diffuse. Next we prove that if a group is diffuse then it satisfies the Unique Product Property. We then prove that if a group satisfies this property, then the group ring formed by this group and any integral domain will satisfy the Kaplansky Conjectures.
dc.description.copyright© Matthew Brannock, 2023
dc.format.extentvii, 82
dc.format.mediumelectronic
dc.identifier.oclc(OCoLC)1439830961en
dc.identifier.otherThesis 11335en
dc.identifier.urihttps://unbscholar.lib.unb.ca/handle/1882/37744
dc.language.isoen
dc.publisherUniversity of New Brunswick
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subject.disciplineMathematics and Statistics
dc.subject.lcshPrediction (Logic)en
dc.subject.lcshGroup theory.en
dc.subject.lcshClass groups (Mathematics)en
dc.titleKaplansky’s conjectures and actions on CAT(-1) Spaces
dc.typemaster thesis
oaire.license.conditionother
thesis.degree.disciplineMathematics and Statistics
thesis.degree.grantorUniversity of New Brunswick
thesis.degree.levelmasters
thesis.degree.nameM.Sc.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Matthew Brannock - Thesis.pdf
Size:
967.36 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.13 KB
Format:
Item-specific license agreed upon to submission
Description: