Beeswax emulsions and microcapsules for hydrophobic modification of cellulose fiber networks

Loading...
Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

University of New Brunswick

Abstract

Various beeswax emulsions and beeswax-based microcapsules were developed in an attempt to reduce the water vapor transmission rate (WVTR) of cellulose fiber networks of paper products which are of great importance for green-based packaging materials. Four different systems were established and investigated: the block polymer (PE-b-PEG) stabilized beeswax emulsion, cationic starch-stabilized beeswax emulsion, nanobentonite-stabilized beeswax emulsion, and starch microcapsules loaded with beeswax. Each emulsion system or latex was applied to paper handsheets via wet-end addition, surface coating or the combination of wet-end addition and coating. The resulting paper products were well characterized with particular attention paid to WVTR measurements. According to the ASTM E-96, a wet-cup method was developed to quantify the WVTR values at the condition of 38°C and 90% relative humidity (RH). The results indicated that the hydrophobic modification of fiber networks increased the hydrophobicity of paper substantially and reduced the WVTR by 70%. The combination of wet-end addition and surface coating creates the synergy in lowering WVTR.

Description

Keywords

Citation