Microstructure and mechanical properties of additively manufactured stainless steel 316L

Thumbnail Image



Journal Title

Journal ISSN

Volume Title


University of New Brunswick


The effects of crystallographic texture and microstructure on the mechanical behavior of a selectively laser melted (SLM) 316L stainless steel subjected to uniaxial tensile loading was discussed. The microstructure of the as-built sample exhibits a hierarchical structure at macro-, micro-, and nano-scales, with good chemical homogeneity and no elemental segregation. The chemical homogeneity was attributed to a very high cooling rate (2.7 × 10[superscript 6]K/s) present in SLM, discrete melt pools, and the formation of nanosized silicon-rich oxides. Due to the formation of a dislocation network during additive manufacturing, 316L showed twinning-induced plasticity (TWIP) behavior with a high strain-hardening rate exhibited in five stages. Pre-existing dislocation networks, where their configuration was maintained during deformation, promoted the formation of nano-twins, resulting in enhanced twin-dislocation and dislocation-dislocation interactions. The formation of deformation-induced nano-twins maintained a constant high-level of strain hardening rate in two stages, enhanced by the development of pronounced <111> texture in the tensile direction and a fiber texture. In addition, the high yield strength of this alloy was attributed to the high density of dislocation cells. The dislocation cellular structure combined with distributed nano-oxide inclusions were responsible for the formation of nanometer ductile dimples (as a nano-scale structure). This microstructure hindered crack propagation and tailored several process-induced defects compared to traditionally manufactured ones. Plastic deformation was governed by dislocation glide and deformation-induced twinning; thus, the final microstructure contained several types of twins and highly misoriented dislocation boundaries. As a final stage, the high temperature behavior of 316L was also studies and some perspectives on its deformation was brought forward.