Equivariant KK-theory and its application in index theory

dc.contributor.advisorKucerovsky, Dan
dc.contributor.authorAbdolmaleki, Yavar
dc.date.accessioned2023-03-01T16:16:48Z
dc.date.available2023-03-01T16:16:48Z
dc.date.issued2022
dc.date.updated2023-03-01T15:01:10Z
dc.description.abstractIn this thesis, using the calculation of a couple of Kasparov products of asymptotically equivariant cycles, we find the index of an asymptotically equivariant Dirac-Schr¨odinger operator on a hyperbolic manifold. In fact, using the calculation of the Kasparov products of a couple of asymptotically equivariant cycles, we reduce the problem of finding the index to the case in which the manifold is compact and so the problem reduces to the Atiyah-Singer index theorem.
dc.description.copyright© Yavar Abdolmaleki, 2022
dc.formattext/xml
dc.format.extentviii, 98 pages
dc.format.mediumelectronic
dc.identifier.oclc(OCoLC)1419002450en
dc.identifier.otherThesis 11004en
dc.identifier.urihttps://unbscholar.lib.unb.ca/handle/1882/13270
dc.language.isoen_CA
dc.publisherUniversity of New Brunswick
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subject.disciplineMathematics and Statistics
dc.subject.lcshKK-theory.en
dc.subject.lcshSchrödinger operator.en
dc.subject.lcshAtiyah-Singer index theorem.en
dc.titleEquivariant KK-theory and its application in index theory
dc.typedoctoral thesis
thesis.degree.disciplineMathematics and Statistics
thesis.degree.fullnameDoctor of Philosophy
thesis.degree.grantorUniversity of New Brunswick
thesis.degree.leveldoctoral
thesis.degree.namePh.D.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
item.pdf
Size:
563.29 KB
Format:
Adobe Portable Document Format