3D transient modeling of thin-film coated surfaces to predict the temperature and ablated areas during laser processing

dc.contributor.advisorKiani, Amirkianoosh
dc.contributor.authorNaghshine, Babak, Baradaran
dc.date.accessioned2023-03-01T16:19:15Z
dc.date.available2023-03-01T16:19:15Z
dc.date.issued2017
dc.date.updated2023-03-01T15:01:32Z
dc.description.abstractIncreasing the biocompatibility of biomaterials is a hot topic in biomedical engineering. Introducing new surface modification methods, that can just slightly enhance the biocompatibility can directly improve the quality of lives of thousands or millions of people all around the globe. The main goal of this thesis is to study laser processed thin film multilayer structures which can be potentially used for biomedical applications. In this thesis, the laser treatment process is numerically modeled to predict the temperature field and surface profile for each set of laser parameters including the average power, repetition rate and scanning speed. The model is successfully verified with experimental measurements. The same model was modified for laser processing of thin film coated metals. The results show that applying a thin film on the surface can completely change the temperature field and make the heat affected zone smaller or larger. A new surface modification method is introduced by combining laser processing and electrospinning technique. In this method, the surface is processed by laser beam and then it is coated with an electrospun thin layer. This method has potential applications in bone implant fabrication. The implant can benefit from excellent biocompatibility of the electrospun layer in short-term, before the fibers are degraded, as well as long-term biocompatibility of the laser treated surface. In vitro tests showed that, this method can improve the biocompatibility, especially when the laser processed surface is coated with nanoscale fibers. Furthermore, it is shown that, by applying the electrospun layer on the surface, the thermal conductivity of the surface is closer to human body’s conductivity. It makes it an attractive method for modification of dental implants, where the cells can be damaged while drinking a hot beverage. Additionally, antibacterial agents (e.g. silver and ampicillin) were added to the fibers as an antibacterial agent, to prevent implant infection.
dc.description.copyright©Babak Baradaran Naghshine, 2017
dc.formattext/xml
dc.format.extentxiii, 96 pages
dc.format.mediumelectronic
dc.identifier.urihttps://unbscholar.lib.unb.ca/handle/1882/13489
dc.language.isoen_CA
dc.publisherUniversity of New Brunswick
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subject.disciplineMechanical Engineering
dc.title3D transient modeling of thin-film coated surfaces to predict the temperature and ablated areas during laser processing
dc.typemaster thesis
thesis.degree.disciplineMechanical Engineering
thesis.degree.fullnameMaster of Science in Engineering
thesis.degree.grantorUniversity of New Brunswick
thesis.degree.levelmasters
thesis.degree.nameM.Sc.E.

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
item.pdf
Size:
4.14 MB
Format:
Adobe Portable Document Format