Multigranularity Multiclass-Layer Markov Random Field Model for Semantic Segmentation of Remote Sensing Images
dc.contributor.author | Zheng, Chen | |
dc.contributor.author | Zhang, Yun | |
dc.contributor.author | Wang, Leiguang | |
dc.date.accessioned | 2023-03-02T23:44:13Z | |
dc.date.available | 2023-03-02T23:44:13Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Semantic segmentation is one of the most important tasks in remote sensing. However, as spatial resolution increases, distinguishing the homogeneity of each land class and the heterogeneity between different land classes are challenging. The Markov random field model (MRF) is a widely used method for semantic segmentation due to its effective spatial context description. To improve segmentation accuracy, some MRF-based methods extract more image information by constructing the probability graph with pixel or object granularity units, and some other methods interpret the image from different semantic perspectives by building multilayer semantic classes. However, these MRF-based methods fail to capture the relationship between different granularity features extracted from the image and hierarchical semantic classes that need to be interpreted. In this article, a new MRF-based method is proposed to incorporate the multigranularity information and the multilayer semantic classes together for semantic segmentation of remote sensing images. The proposed method develops a framework that builds a hybrid probability graph on both pixel and object granularities and defines a multiclass-layer label field with hierarchical semantic over the hybrid probability graph. A generative alternating granularity inference is suggested to provide the result by iteratively passing and updating information between different granularities and hierarchical semantics. The proposed method is tested on texture images, different remote sensing images obtained by the SPOT5, Gaofen-2, GeoEye, and aerial sensors, and Pavia University hyperspectral image. Experiments demonstrate that the proposed method shows a better segmentation performance than other state-of-the-art methods. | |
dc.description.copyright | © IEEE IEEE seeks to maximize the rights of its authors and their employers to post the author-submitted, peer-reviewed, and accepted manuscript of an article on the author's personal web site or on a server operated by the author's employer. Additionally, IEEE allows its authors to follow mandates of agencies that fund the author's research by posting author-submitted, peer-reviewed, and accepted manuscript of their articles in the agencies' publicly accessible repositories. No third party (other than authors and employers) may post IEEE-copyrighted material without obtaining the necessary licenses or permissions from the IEEE Intellectual Property Rights Office or other authorized representatives of the IEEE. | |
dc.identifier.uri | https://unbscholar.lib.unb.ca/handle/1882/22370 | |
dc.identifier.url | https://doi.org/10.1109/TGRS.2020.3033293 | |
dc.publisher | IEEE | |
dc.relation.hasversion | 10.1109/TGRS.2020.3033293 | |
dc.rights | http://purl.org/coar/access_right/c_abf2 | |
dc.subject.discipline | Geodesy and Geomatics Engineering | |
dc.title | Multigranularity Multiclass-Layer Markov Random Field Model for Semantic Segmentation of Remote Sensing Images | |
dc.type | journal article | |
oaire.citation.endPage | 20 | |
oaire.citation.startPage | 1 | |
oaire.citation.title | IEEE Transactions on Geoscience and Remote Sensing |
Files
Original bundle
1 - 1 of 1