A supervised approach for the estimation of parameters of multiresolution segmentation and its feature extraction from VHR imagery

dc.contributor.authorDey, Vivek
dc.date.accessioned2023-03-01T18:29:22Z
dc.date.available2023-03-01T18:29:22Z
dc.description.abstractWith the advent of very high spatial resolution (VHR) satellite, spatial details within the image scene have increased considerably. This led to the development of object-based image analysis (OBIA) for the analysis of VHR satellite images. Image segmentation is the fundamental step for OBIA. However, a large number of techniques exist for RS image segmentation. To identify the best ones for VHR imagery, a comprehensive literature review on image segmentation is performed. Based on that review, it is found that multiresolution segmentation, as implemented in the commercial software eCognitionTM, is the most widely-used technique and has been successfully applied for a wide variety of VHR images. However, multiresolution segmentation suffers from the parameter estimation problem. Therefore, this study proposes a solution to the problem of the parameter estimation for improving its efficiency in VHR image segmentation. The solution aims to identify the optimal parameters, which correspond to effective segmentation. The solution to the parameter estimation is drawn from the equations related to the merging of any two adjacent objects in multiresolution segmentation. The solution utilizes spectral, shape, size, and neighbourhood relationships for a supervised solution. In order to justify the results of the solution, a global segmentation accuracy evaluation technique is also proposed. The solution performs excellently with the VHR images of different sensors, scenes, and land cover classes. In order to justify the applicability of solution to a real life problem, a building detection application based on multiresolution segmentation from the estimated parameters, is carried out. The accuracy of the building detection is found nearly to be eighty percent. Finally, it can be concluded that the proposed solution is fast, easy to implement, and effective for the intended applications.
dc.description.copyrightAs with any copyrighted material, permission to reprint or quote extensively from this report must be received from the author.
dc.identifier.urihttps://unbscholar.lib.unb.ca/handle/1882/14919
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subject.disciplineGeodesy and Geomatics Engineering
dc.titleA supervised approach for the estimation of parameters of multiresolution segmentation and its feature extraction from VHR imagery
dc.typetechnical report

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
item.pdf
Size:
8.46 MB
Format:
Adobe Portable Document Format

Collections