A polynomial-time algorithm to find the shortest cycle basis of a graph

dc.contributor.authorHorton, J., D.
dc.date.accessioned2023-03-01T18:28:38Z
dc.date.available2023-03-01T18:28:38Z
dc.date.issued1984
dc.description.abstractDefine the length of a basis of a cycle space to be the sum of the lengths of all circuits in the basis. An algorithm is given that finds a basis with the shortest length in 0(e[superscript 3]v) operations. Edges may be weighted or unweighted.
dc.description.copyrightCopyright @ J. D. Horton, 1984.
dc.identifier.urihttps://unbscholar.lib.unb.ca/handle/1882/14863
dc.rightshttp://purl.org/coar/access_right/c_abf2
dc.subject.disciplineComputer Science
dc.titleA polynomial-time algorithm to find the shortest cycle basis of a graph
dc.typetechnical report

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
item.pdf
Size:
154.17 KB
Format:
Adobe Portable Document Format

Collections